Subscribe to RSS
DOI: 10.1055/s-0029-1240658
© Georg Thieme Verlag KG Stuttgart · New York
Antinociceptive Effect of Heliopsis longipes Extract and Affinin in Mice
Publication History
received July 29, 2009
revised October 24, 2009
accepted Nov. 2, 2009
Publication Date:
30 November 2009 (online)
Abstract
Heliopsis longipes is used as analgesic in Mexican traditional medicine. The present study assesses the possible antinociceptive effect of Heliopsis longipes and describes the pharmacological mechanism of action of the antinociceptive effect of affinin, identified as the one active principle in Heliopsis longipes acetone extract. Intraperitoneal administration of H. longipes extract and affinin produced a dose-dependent antinociceptive effect when assessed in mice submitted to acetic acid and capsaicin tests. Affinin-induced antinociception (30 mg/kg, i. p.) was blocked by naltrexone (1 mg/kg, s. c.), p-chlorophenylalanine (80 mg/kg, i. p.) and flumazenil (5 mg/kg, s. c.) suggesting that its pharmacological effect could be due to the activation of opiodergic, serotoninergic and GABAergic systems. In addition, the antinociceptive effect of affinin was attenuated by pretreatment with 1H-[1,2,4]oxadiazolo[1,2-a]quinoxalin-1-one (1 mg/kg, s. c.) and glibenclamide (10 mg/kg, s. c.) suggesting that the nitric oxide-K+ channels pathway could be involved in its mechanism of action. These results suggest that affinin itself or its derivatives may have potential antinociceptive effects.
Key words
Heliopsis longipes - Compositae - affinin - antinociceptive activity - capsaicin test - writhing test
References
- 1 Correa J, Roquet S, Díaz E. Multiple NMR analysis of the affinin. Org Magn Reson. 1971; 3 1-5
- 2 Molina-Torres J, Salgado-Garciglia R, Ramírez-Chávez E. Presence of the bornyl ester of deca-2E,6Z,8E-trienoic acid in Heliopsis longipes roots. J Nat Prod. 1995; 50 1590-1591
- 3 Molina-Torres J, Salgado-Garciglia R, Ramírez-Chávez E, Del Río R E. Purely olefinic alkamides in Heliopsis longipes and Acmella (Spilanthes) oppositifolia. Biochem Syst Ecol. 1996; 24 43-47
- 4 Jacobson M, Acree F, Haller H L. Correction of the source of “affinin” (N-isobutyl-2,6,8-decatrienoamide). J Org Chem. 1947; 12 731-732
- 5 Jacobson M. Constituents of Heliopsis longipes species. III. Cis-trans isomerism in affinin. J Am Chem Soc. 1954; 76 4606-4608
- 6 Jacobson M. Constituents of Heliopsis longipes species. IV. The total synthesis of trans-affinin. J Am Chem Soc. 1955; 77 2461-2463
- 7 Molina-Torres J, Salazar-Cabrera C J, Armenta-Salinas C, Ramírez-Chávez E. Fungistatic and bacteriostatic activities of alkamides from Heliopsis longipes roots: affinin and reduced amidas. J Agric Food Chem. 2004; 52 4700-4704
- 8 Acosta-Madrid I I, Castañeda-Hernández G, Cilia-López V G, Cariño-Cortés R, Pérez-Hernández N, Fernández-Martínez E, Ortíz M I. Interaction between Heliopsis longipes and diclofenac on the thermal hyperalgesia test. Phytomedicine. 2009; 16 336-341
- 9 Rios M Y, Aguilar-Guadarrama A B, Gutiérrez M del C. Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae). J Ethnopharmacol. 2007; 110 364-367
- 10 Zimmerman M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983; 16 109-110
- 11 Sakurada T, Katsumata K, Tan-No K, Sakurada S, Kisara K. The capsaicin test in mice for evaluating tachykinin antagonists in the spinal cord. Neuropharmacology. 1992; 31 1279-1285
- 12 Koster R, Anderson M, De Beer E J. Acetic acid for analgesic screening. Fed Proc. 1959; 18 412
- 13 Ogura M, Cordell G A, Quinn M L, Leon C, Benoit P S, Soejarto D D, Farnsworth N R. Ethnopharmacologic studies. I. Rapid solution to a problem – oral use of Heliopsis longipes – by means of multidisciplinary approach. J Ethnopharmacol. 1982; 5 215-219
- 14 Cervero F, Laird J M. Visceral pain. Lancet. 1999; 353 2145-2148
- 15 Santos A R, Calixto J B. Ruthenium red and capsazepine antinociceptive effect in formalin and capsaicin models of pain in mice. Neurosci Lett. 1997; 235 73-76
- 16 Fusco M, D'Andrea G, Miccichè F, Stecca A, Bernardini D, Cananzi A L. Neurogenic inflammation in primary headaches. Neurol Sci. 2003; 24 S61-S64
- 17 Pini L A, Sandrini M, Vitale G. The antinociceptive action of paracetamol is associated with changes in the serotoninergic system in the rat brain. Eur J Pharmacol. 1996; 308 31-40
- 18 Sierralta F, Miranda H F. Analgesic effect of benzodiazepines and flumazenil. Gen Pharmacol. 1992; 23 739-742
- 19 Duarte I D G, Lorenzetti B B, Ferreira S. Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Eur J Pharmacol. 1990; 186 289-293
- 20 Granados-Soto V, Flores-Murrieta F, Castañeda-Hernández G, López-Muñoz F J. Evidence for the involvement of nitric oxide in the antinociceptive effect of ketorolac. Eur J Pharmacol. 1995; 277 281-284
- 21 Granados-Soto V, Rufino M O, Lopes L D G, Ferreira S H. Evidence for the involvement of the nitric oxide – cGMP pathway in the antinociception of morphine in the formalin test. Eur J Pharmacol. 1997; 340 177-180
- 22 Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science. 1990; 247 852-854
- 23 Davies N W, Pettit A I, Agarwal R, Standen N B. The flickery block of ATP-dependent potassium channels of skeletal muscle by internal 4-aminopyridine. Pflugers Arch. 1991; 419 25-31
- 24 Edwards G, Weston A H. Induction of a glibenclamide-sensitive K-current by modification of a delayed rectifier channel in rat portal vein in insulinoma cells. Br J Pharmacol. 1993; 110 1280-1281
- 25 Alves D, Duarte I. Involvement of ATP-sensitive-K(+) channel in the peripheral antinociceptive effect induced by dipyrone. Eur J Pharmacol. 2002; 444 47-52
- 26 Alves D P, Tatsuo M A, Leite R, Duarte I D. Diclofenac-induced peripheral antinociception is associated with ATP-sensitive K+ channels activation. Life Sci. 2004; 74 2577-2591
- 27 Soares A C, Leite R, Tatsuo M A K F, Duarte I D G. Activation of ATP-sensitive K+ channels: mechanism of peripheral antinociceptive action of the nitric oxide donor, sodium nitroprusside. Eur J Pharmacol. 2000; 400 67-71
- 28 Bermúdez-Ocaña D Y, Ambriz-Tututi M, Pérez-Severiano F, Granados-Soto V. Pharmacological evidence for the participation of NO-cyclic GMP-PKG-K+ channel pathway in the antiallodynic action of resveratrol. Pharmacol Biochem Behav. 2006; 84 535-542
- 29 Ortíz M I, Medina-Tato D A, Sarmiento-Heredia D, Palma-Martínez J, Granados-Soto V. Possible activation of the NO-cyclic GMP-protein kinase G–K+ channels pathway by gabapentin on the formalin test. Pharmacol Biochem Behav. 2006; 83 420-427
- 30 Hernández-Pacheco A, Araiza-Saldaña C I, Granados-Soto V, Mixcoatl-Zecuatl T. Possible participation of the nitric oxide-cyclic GMP-protein kinase G–K+ channels pathway in the peripheral antinociception of melatonin. Eur J Pharmacol. 2008; 596 70-76
Ph.D. Myrna Déciga-Campos
Sección de Estudios de Posgrado e Investigación
Plan de San Luis y Díaz Mirón s/n
Colonia Santo Tomas
Delegación Miguel Hidalgo
11340 México D. F.
México
Phone: +525 5 57 29 63 00 ext. 5729
Email: mdeciga@ipn.com.mx
Ph.D. María Yolanda Rios
Centro de Investigaciones Químicas
Avenida Universidad 1001
Colonia Chamilpa,
62209 Cuernavaca
Morelos
México
Phone: +52 77 73 29 70 00 ext. 6024
Email: myolanda@uaem.mx