Subscribe to RSS
DOI: 10.1055/s-0029-1241856
© Georg Thieme Verlag KG Stuttgart · New York
Methodenvergleich zebris® Messsystem CMS 70 P und Varilux-Essilor VisionPrint System™ zur neuromuskulären Stereotypbestimmung
Comparison of Measurement Devices zebris® CMS 70 P and Varilux Essilor VisionPrint System™ for Identification of Neuro-muscular Patterns “Head-or-Eye-Mover”Publication History
eingereicht: 18.2.2009
angenommen: 7.9.2009
Publication Date:
24 February 2010 (online)

Zusammenfassung
Fragestellung: Ziel dieser Studie war eine Einschätzung der Einsatzmöglichkeit des VisionPrint System™ als wissenschaftliches Messinstrument hinsichtlich der Beurteilung der neuromuskulären Stereotype Head- oder Eye-Mover.
Material und Methode: Für die Beurteilung der Validität wurden die Kopfbewegungen als Teil von horizontalen Blickbewegungen von 23 Probanden (17,17±0,58 Jahre; 68,96±11,14 kg; 176,43±6,01 cm) sowohl mit dem VisionPrint System™ als auch mit dem zebris® CMS 70 P Messsystem gemessen. Diese beiden Datenreihen wurden nach Pearson korreliert, um die Größe der Konstruktvalidität zu bestimmen. Zur Bewertung der Reliabilität wurde, das VisionPrint System™ einer Test-Retest-Untersuchung unterzogen. Dazu konnten 7 der 23 Probanden (17,14±0,69 Jahre; 70,71±6,32 kg; 178,14±4,49 cm) von der Validitätsbestimmung rekrutiert werden. Diese zwei Messwertreihen wurden nach Kendall Tau-b korreliert, um die Größe der Inter-Session-Reliabilität einschätzen zu können. Außerdem wurde, unter Berücksichtigung der zulässigen Bereiche des VisionPrint System™, der Messaufbau mit geänderter Patientenpositionierung geometrisch nachempfunden und die sich daraus ergebenden trigonometrischen Größen berechnet.
Ergebnisse: Das Messgerät wurde durch einen Pearsonschen Korrelationskoeffizienten von r=0,867 als valide, aber aufgrund eines Korrelationskoeffizienten nach Kendall Tau-b von r=0,619 als nicht reliabel eingestuft. Veränderte Ausgangspositionen haben einen erheblichen Einfluss sowohl auf die Trigonometrie von Blickbewegungen als auch auf die Dynamik von Kopf- und Augenbewegungen.
Schlussfolgerung: Das VisionPrint System™ ist für wissenschaftliche Untersuchungen, speziell für die Diskriminierung der neuromuskulären Stereotype Head- oder Eye-Mover, nicht geeignet.
Abstract
Purpose: The aim of this study was an estimation of the use of the Vision Print System™ as a scientific measurement device which appraises between the neuro-muscular patterns head-or eye-mover.
Materials and Methods: For the assessment of validity, head-movements, as a part of horizontal gaze-shifts, were measured on 23 subjects (17.17±0.58 years; 68.96±11.14 kg; 176.43±6.01 cm) by VisionPrint System™ as well as zebris® CMS 70 P measurement system. Both lists of measurement readings get correlated according to Pearson to assign the dimension of construct-validity. For assessment of reliability the VisionPrint System™ were assayed by a test- retest analysis. Therefore 7 out of 23 subjects (17.14±0.69 years; 70.71±6.32 kg; 178.14±4.49 cm) could get recruited by validity-assignment. The two statistical series were correlated according to Kendall Tau-b to assess the dimension of Inter-Session-reliability. In consideration with the admissible range of the VisionPrint System™ the measurement-setup gets emulated, and the resultant trigonometric quantities were calculated.
Results: On the basis of the Pearsonschen correlation-coefficient r=0.867 the measurement system were valid on the one hand, on the other hand the correlation-coefficient according to Kandall Tau-b r=0.619 were classified as non-reliable. Modified initial positions have a considerable effect to the trigonometry of gaze-shifts and to the dynamic of head and eye-movement.
Conclusions: The VisionPrint System™ is not adequate for scientific analysis, especially not for discrimination of neuromuscular stereotype head- or eye-mover.
Schlüsselwörter
Messgeräte - Blickbewegung - Head-Eye-Mover - neuromuskuläre Stereotype
Key words
measurement devices - gaze-shift - head-eye-mover - neuromuscular pattern
Literatur
- 1 Fuller JH. Head movement propensity. Experimental Brain Research. 1992; 92 152-164
- 2 Stahl JS. Amplitude of human head movements associated with horizontal saccades. Experimental Brain Research. 1999; 126 41-54
- 3 McCluskey MK, Cullen KE. Eye, Head, and Body Coordination during Large Gaze Shifts in Rhesus Monkeys: Movement Kinematics and the Influence of Posture. The Journal of Neurophysiology. 2007; 97 2976-2991
- 4 Simonet P, Bonnin T, Beaulne C. et al . Augen/Kopf-Koordination bei Alterssichtigen. P.d.v.. 2003; 49 17-22
- 5 Stahl JS. Adaptive plasticity of head movement propensity. Experimental Brain Research. 2001; 139 201-208
- 6 Bizzi E, Kalil RE, Morasso P. Two modes of active eye-head coordination in monkeys. Brain Research. 1972; 40 45-48
- 7 Moschner C, Zangemeister WH. Preview control of gaze saccades: Efficacy of prediction modulates eye-head interaction during human gaze saccades. Neurological Research. 1993; 15 417-432
- 8 Zangemeister WH, Stark L. Types of Gaze Movement: Variable Interactions of Eye and Head Movements. Experimental Neurology. 1982; 77 563-577
- 9 Corneil BD, Olivier E, Munoz DP. Neck muscle responses to stimulation of monkey superior colliculus. The Journal of Neurophysiology. 2002; 88 1980-2018
- 10 Freedman EG, Sparks DL. Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. The Journal of Neurophysiology. 1997; 77 2328-2348
- 11 Freedman EG, Sparks DL. Activity of cells in the deeper layers of the superior colliculus of the Rhesus Monkey: Evidence for a gaze displacement command. The Journal of Neurophysiology. 1997; 78 1669-1690
- 12 Funk CJ, Anderson ME. Saccadic eye movements and eye-head coordination in children. Perceptual and motor skills. 1977; 44 599-610
- 13 Gresty MA. Coordination of head and eye movements to fixate continuous and intermittent targets. Vision Research. 1974; 14 395-403
- 14 Stahl JS. Amplitude of human head movements associated with horizontal saccades. Experimental Brain Research. 1999; 126 41-54
- 15 Land MF. The coordination of rotation of the eyes, head and trunk in saccadic turns produced in natural situations. Experimental Brain Research. 2004; 159 151-160
- 16 Bahill AT, Adler D, Stark L. Most naturally occurring human saccades have magnitudes of 15 degrees or less. Investigative ophthalmology. 1975; 14 468-469
- 17 Bartz AE. Eye and head movements in peripheral vision: nature of compensatory eye movements. Science. 1966; 152 1644-1645
- 18 Afanador AJ, Aitsebaomo P, Gertsman DR. Eye and head contribution to gaze at near through multifocals: The usable field of view. American journal of optometry and physiological optics. 1986; 63 187-192
- 19 Bard C, Fleury M, Paillard J. Different Patterns in Aiming Accuracy for Head-Movers and Non-Head Movers.. In: Berthoz A, Graf W, Vidal PP , eds. The Head-Neck-Sensory-Motor System. Oxford: Oxford University Press; 1992: 582-586
- 20 Corneil BD, Elsley JK. Countermanding eye-head gaze shifts in human: Marching orders are delivered to the head first. The Journal of Neurophysiology. 2005; 94 883-895
- 21 Ron S, Berthoz A, Gur S. Saccade-vestibulo-ocular reflex cooperation and eye-head uncoupling during orientation to flashed target. The Journal of Neurophysiology. 1993; 464 595-611
- 22 Barnes GR. Vestibulo-ocular function during co-ordinated head and eye movements to acquire visual targets. Journal of Physiology. 1979; 287 127-147
- 23 Chen LL, Walton MMG. Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey. The Journal of Neurophysiology. 2005; 94 4502-4519
- 24 Chen LL. Head Movements Evoked by Electrical Stimulation in the Frontal Eye Field of the Monkey: Evidence for Independent Eye and Head Control. The Journal of Neurophysiology. 2006; 95 3528-3542
- 25 Cullen KE, Guitton D. Analysis of Primate IBN Spike Trains Using System Identification Techniques. II. Relationship to Gaze, Eye, and Head Movement Dynamics During Head-Free Gaze Shifts. The Journal of Neurophysiology. 1997; 78 3259-3282
- 26 Freedman EG, Sparks DL. Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. The Journal of Neurophysiology. 1997; 77 2328-2348
- 27 Gdowski GT, Boyle R, McRea RA. Sensory processing in the vestibular nuclei during active head movements. Archives italiennes de biologie: A journal of neuroscience. 2000; 138 15-28
- 28 Gdowski GT, McRea RA. Neck proprioceptive inputs to primate vestibular nucleus neurons. Experimental Brain Research. 2000; 135 511-526
- 29 Karnath HO, Reich E, Rorden C. et al . The perception of body orientation after neck-proprioceptive stimulation: Effects of time and of visual cueing. Experimental Brain Research. 2002; 143 350-358
- 30 Proudlock FA, Shekhar H, Gottlob I. Coordination of eye and head movements during reading. Investigative Ophthalmology & Visual Science. 2003; 44 2991-2998
- 31 Hutchings N, Irving EL, Jung N. et al . Eye and head movement alterations in naive progressive addition lens wearers. Ophthalmic and Physiological Optics. 2007; 27 142-153
- 32 Murray K, Lillakas L, Weber R. et al . Development of head movement propensity in 4–15 year old children in response to visual step stimuli. Experimental Brain Research. 2007; 177 15-20
- 33 Beyer L, Seidel EJ, Hartmann J. et al . Head- und Eye-Mover: Differentialtherapeutische Bedeutung für die Manuelle Medizin. Manuelle Medizin. 2006; 5 411-412
- 34 Wang SF, Teng CC, Lin KH. Measurement of cervical range of motion pattern during cyclic neck movement by an ultrasound-based motion system. Manuelle Therapie. 2005; 10 68-72
- 35 Castro WH, Sautmann A, Schilgen M. et al . Noninvasive three-dimensional analysis of cervical spine motion in normal subjects in relation to age and sex. An experimental examination. Spine. 2000; 25 443-449
- 36 Mannion AF, Klein GN, Dvorak J. et al . Range of global motion of the cervical spine: Intraindividual reliability and the influence of measurement device. European Spine Journal. 2000; 9 379-385
- 37 Natalis M, König A. Nichtinvasive, akkurate und reliable Messung der Halswirbelsäulenbeweglichkeit mittels ultraschallgestützter 3D-Echtzeit-Bewegungsanalyse. Ultraschall Medizin. 1999; 20 70-73
- 38 Smolenski UC, Endres G, Bocker B. Untersuchung der Halswirbelsäulenbeweglichkeit mittels Bewegungsfunktionsanalysesystem zebris und Winkelmessung. Manuelle Medizin. 2003; 41 365-373
- 39 Beyer L, Seidel EJ. Motorischer Stereotype der Koordination von Kopf und Blickbewegung – Ursachen für Schmerzen im Nacken- und Schultergürtel (physiologische Grundlagen). Phys Rehab Kur Med. 2007; 17 DOI: 10.1055/s-2007-988713 http://www.thieme-connect.com/ejournals/abstract/physmed/doi/10.1055/s-2007-988713
- 40 Seidel EJ, Hartmann J, Schaff T. et al . Head-Eye-Movement in verschiedenen Altersgruppen sowie bei Patienten mit Nacken-Schulter-Syndrom. Phys Rehab Kur Med. 2007; 17 DOI: 10.1055/s-2007-988753 http://www.thieme-connect.com/ejournals/abstract/physmed/doi/10.1055/s-2007-988753
- 41 Fujiwara K, Kunita K, Toyama H. Changes in saccadic reaction time while maintaining neck flexion in men and women. European journal of applied physiology. 2000; 81 317-324
Korrespondenzadresse
Dipl.-Sportwiss. M. Schaaf
Zentrum für Physikalische und
Rehabilitative Medizin (ZPRM)
Henry-van-de-Velde Straße 2
99425 Weimar
Email: mtt@klinikum-weimar.de