Subscribe to RSS
DOI: 10.1055/s-0029-1242443
© Georg Thieme Verlag KG Stuttgart · New York
Hintergrund: Rehabilitation und Plastizität
Publication History
Publication Date:
09 November 2009 (online)
Zusammenfassung
Das menschliche Gehirn ist in erstaunlichem Maße in der Lage, sich weiterzuentwickeln und äußeren Einflüssen anzupassen. Diese Fähigkeit der Umgestaltung von Nervenzellverbünden bezeichnet man als neuronale Plastizität. Diese Prozesse sind für die Rehabilitation nach Hirnschädigung sehr bedeutend, z. B. im Rahmen eines Schlaganfalls. Ziel ist es, über das Verständnis der neuronalen Plastizität und deren zugrunde liegenden molekularen und elektrophysiologischen Mechanismen durch Entwicklung darauf basierender Trainingsprogramme und supportiver Maßnahmen den Rehabilitationserfolg entscheidend zu verbessern. Dieser Artikel gibt einen kurzen Überblick über Mechanismen neuronaler Plastizität. Auf diesen Erkenntnissen basiert deren Nachweis am lebenden Menschen und die Entwicklung moderner rehabilitativer Verfahren. Christoph Globas
Literatur
- 01 Adkins D L, Boychuk J, Remple M S. et al. . Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol . 2006; 101(6) 1776-1782
- 02 Baron J C, Cohen L G, Cramer S C. et al. . Neuroimaging in stroke recovery: a position paper from the First International Workshop on Neuroimaging and Stroke . Cerebrovasc Dis. 2004; 18(3) 260-267
- 03 Butefisch C M, Netz J, Wessling M. et al. . Remote changes in cortical excitability after stroke. Brain. 2003; 126 470-481
- 04 Carel C, Loubinoux I, Boulanouar K. et al. . Neural substrate for the effects of passive training on sensorimotor cortical representation: a study with functional magnetic resonance imaging in healthy subjects. J Cereb Blood Flow Metab. 2000; 20(3 478-484
- 05 Carmichael S T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol . 2006; 59(5) 735-742
- 06 Carroll T J, Herbert R D, Munn J. Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol. 2006; 101(5) 1514-1522
- 07 Cramer S C, Nelles G, Benson R R. et al. . A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997; 28(12) 2518-2527
- 08 de Kroon J R, Ijzerman M J, Chae J. et al. . Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. J Rehabil Med. 2005; 37(2) 65-74
- 09 Draganski B, Gaser C, Busch V. et al. . Neuroplasticity: changes in grey matter induced by training. Nature. 2004; 427(6972) 311-312
- 10 Elbert T, Rockstroh B. Reorganization of human cerebral cortex: the range of changes following use and injury. Neuroscientist. 2004; 10(2 129-141
- 11 Enzinger C, Johansen-Berg H, Dawes H. et al. . Functional MRI correlates of lower limb function in stroke victims with gait impairment. Stroke. 2008; 39(5) 1507-1513
- 12 Gauthier L V, Taub E, Perkins C. et al. . Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke. 2008; 39(5) 1520-1525
- 13 Hamzei F, Liepert J, Dettmers C. et al. . Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS. Neuroimage. 31(2) 710-720
- 14 Hebb D O. Organization of behavior. New York, John Wiley 1949
- 15 Johansen-Berg H, Dawes H, Guy C. et al. . Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain. 2002; 125 2731-2742
- 16 Johansen-Berg H, Rushworth M F, Bogdanovic M F. et al. . The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A. 2002; 99(22) 14518-14523
- 17 Kaelin-Lang A, Luft A R, Sawaki L. et al. . Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002; 540 623-633
- 18 Kolb B, V I Q. Neuropsychologie. Heidelberg, Berlin, Oxford, Spektrum 1996
- 19 Kollen B J, Lennon S, Lyons B. et al. . The Effectiveness of the Bobath Concept in Stroke Rehabilitation. What is the Evidence?. Stroke. 2009; 40 89-97 (EPub)
- 20 Kwakkel G, van Peppen R, Wagenaar R C. et al. . Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004; 35(11) 2529-2539
- 21 Lacourse M G, Turner J A, Randolph-Orr E. et al. . Cerebral and cerebellar sensorimotor plasticity following motor imagery-based mental practice of a sequential movement. . J Rehabil Res Dev. 2004; 41(4) 505-524
- 22 Liepert J, Bauder H, Wolfgang H R. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000; 31(6) 1210-1216
- 23 Luft A R, McCombe-Waller S, Whitall J. et al. . Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004; 292(15) 1853-1861
- 24 Luft A R, Macko R F, Forrester L W. et al. . Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial. Stroke. 2008; 39(12) 3341-3350
- 25 Macko R F, Ivey F M, Forrester L W. et al. . Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005; 36(10) 2206-2211
- 26 Mehrholz J, Werner C, Kugler J. et al. . Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2007 4 Art.No. CD006185
- 27 Merzenich M M, Nelson R J, Stryker M P. et al. . Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984; 224(4) 591-605
- Mudie M H, Matyas T A. Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke?. Disabil Rehabil. 2000; 22 23-37
- 29 Murase N, Duque J, Mazzocchio R. et al. . Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004; 55(3) 400-409
- 30 Page S J, Levine P, Leonard A. Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke. 2007; 38(4) 1293-1297
- 31 Rossini P M, Rossi S. Clinical applications of motor evoked potentials. Electroencephalogr Clin Neurophysiol. 1998; 106(3) 180-194
- 32 Rossini P M, Calautti C, Pauri F. et al. . Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003; 2(8) 493-502
- 33 Rossini P M, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology. 2007; 68(7) 484-488
- 34 Scheidtmann K, Fries W, Muller F, Koenig E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet. 2001; 358 787-790
- 35 Shaw. et al. . Neurodevelopmental Trajectories of the Human Cerebral Cortex. Neurosci. 2008; 28(14) 3586-3594
- 36 Stewart K C, Cauraugh J H, Summers J J. Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis. J Neurol Sci . 2006; 244 89-95
- 37 Takahashi C D, Der-Yeghiaian L , Le V. et al. . Robot-based hand motor therapy after stroke. Brain. 2008; 131(Pt 2) 425-437
- 38 Taub E, Miller N E, Novack T A. et al. . Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993; 74(4) 347-354
- 39 Wolf S L, Winstein C J, Miller J P. et al. . Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006; 296(17) 2095-2104
- 40 Wolf S L, Winstein C J, Miller J P. et al. . Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol . 2008; 7(1) 33-40
Dr. med. Christoph Globas
Joachim Cerny
Prof. Dr. med. Andreas R Luft
Neurologische Klinik und Hertie-Institut für Klinische Hirnforschung des Universitätsklinikums Tübingen
Hoppe-Seyler-Str. 3, 72076 Tübingen
Phone: Tel.: 07071/2980414
Email: cglobas@me.com