Cent Eur Neurosurg 2010; 71(3): 139-142
DOI: 10.1055/s-0029-1242756
Review

© Georg Thieme Verlag KG Stuttgart · New York

Glioblastoma Invasion, Cathepsin B, and the Potential for Both to be Inhibited by Auranofin, an Old Anti-Rheumatoid Arthritis Drug

R. E. Kast1
  • 1University of Vermont, Psychiatry, Burlington, United States
Further Information

Publication History

Publication Date:
01 February 2010 (online)

Abstract

Cathepsin B activity is absent in normal brain tissue but overexpressed in glioblastomas. Immunohistochemistry localizes cathepsin B to areas of invasion and neovascularization. Several research teams have confirmed the relationship between higher cathepsin B expression, more aggressive glioblastoma course and a shorter overall survival. An old anti-rheumatoid arthritis drug, auranofin, has a documented micromolar range for the inhibition of cathepsin B. Such levels are clinically achievable with the adequately tolerated doses that are used to treat rheumatoid arthritis. The side-effect profile of auranofin, although not entirely problem-free, is benign enough to warrant further trials in good fidelity rodent glioblastoma models followed by a translation to clinical trials if these confirm a potential for benefit. A newly discovered amplification loop between cathepsin B and urokinase-type plasminogen activator outlined in this paper is active in glioblastoma and makes auranofin inhibition particularly attractive for its potential to inhibit the matrix degrading feedback cycle.

References

  • 1 Lefranc F, Sadeghi N, Camby I. et al . Present and potential future issues in glioblastoma treatment.  Expert Rev Anticancer Ther. 2006;  6 (5) 719-732
  • 2 Hayashi Y, Edwards NA, Proescholdt MA. et al . Regulation and function of aquaporin-1 in glioma cells.  Neoplasia. 2007;  9 777-787
  • 3 Strojnik T, Kavalar R, Trinkaus M. et al . Cathepsin L in glioma progression: comparison with cathepsin B.  Cancer Detect Prev. 2005;  29 448-455
  • 4 Wang M, Tang J, Liu S. et al . Expression of cathepsin B and microvascular density increases with higher grade of astrocytomas.  J Neurooncol. 2005;  71 3-7
  • 5 Gondi CS, Lakka SS, Yanamandra N. et al . Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas.  Cancer Res. 2004;  64 4069-4077
  • 6 Mai J, Sameni M, Mikkelsen T. et al . Degradation of extracellular matrix protein tenascin-C by cathepsin B: an interaction involved in the progression of gliomas.  Biol Chem. 2002;  383 1407-1413
  • 7 Strojnik T, Zajc I, Bervar A. et al . Cathepsin B and its inhibitor stefin A in brain tumors.  Pflugers Arch. 2000;  439 (3 Suppl) R122-R123
  • 8 Strojnik T, Kos J, Zidanik B. et al . Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors.  Clin Cancer Res. 1999;  5 559-567
  • 9 Mikkelsen T, Yan PS, Ho KL. et al . Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis.  J Neurosurg. 1995;  83 285-290
  • 10 Colin C, Voutsinos-Porche B,, Nanni I. et al . High expression of cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of survival in glioblastomas.  Acta Neuropathol. 2009 Sept 23;  [Epub ahead of print] PubMed PMID: 19774387
  • 11 Rempel SA, Rosenblum ML, Mikkelsen T. et al . Cathepsin B expression and localization in glioma progression and invasion.  Cancer Res. 1994;  54 6027-6031
  • 12 Yamamoto M, Ueno Y, Hayashi S. et al . The role of proteolysis in tumor invasiveness in glioblastoma and metastatic brain tumors.  Anticancer Res. 2002;  22 4265-4268
  • 13 Levicar N, Nuttall RK, Lah TT. Proteases in brain tumour progression.  Acta Neurochir (Wien). 2003;  145 825-838
  • 14 Lakka SS, Gondi CS, Yanamandra N. et al . Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis.  Oncogene. 2004;  23 4681-4689
  • 15 Yanamandra N, Gumidyala KV, Waldron KG. et al . Blockade of cathepsin B expression in human glioblastoma cells is associated with suppression of angiogenesis.  Oncogene. 2004;  23 2224-2230
  • 16 Konduri SD, Yanamandra N, Siddique K. et al . Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells.  Oncogene. 2002;  21 8705-8712
  • 17 Mohanam S, Jasti SL, Kondraganti SR. et al . Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells.  Oncogene. 2001;  20 3665-3673
  • 18 Werle B, Ebert W, Klein W. et al . Cathepsin B in tumors, normal tissue and isolated cells from the human lung.  Anticancer Res. 1994;  14 1169-1176
  • 19 Iwatsuki K, Kumara E, Yoshimine T. et al . Elastase expression by infiltrating neutrophils in gliomas.  Neurol Res. 2000;  22 (5) 465-468
  • 20 Kean WF, Hart L, Buchanan WW. Auranofin.  Br J Rheumatol. 1997;  36 560-572
  • 21 Gunatilleke SS, de Oliveira CA, McCammon JA. et al . Inhibition of cathepsin B by Au(I) complexes: a kinetic and computational study.  J Biol Inorg Chem. 2008;  13 555-561
  • 22 Gunatilleke SS, Barrios AM. Tuning the Au(I)-mediated inhibition of cathepsin B through ligand substitutions.  J Inorg Biochem. 2008;  102 555-563
  • 23 Cox AG, Brown KK, Arner ES. et al . The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation.  Biochem Pharmacol. 2008;  76 1097-1109
  • 24 Talbot S, Nelson R, Self WT. Arsenic trioxide and auranofin inhibit selenoprotein synthesis: implications for chemotherapy for acute promyelocytic leukaemia.  Br J Pharmacol. 2008;  154 940-948
  • 25 Becker K, Gromer S, Schirmer RH. et al . Thioredoxin reductase as a pathophysiological factor and drug target.  Eur J Biochem. 2000;  267 6118-6125
  • 26 Marzano C, Gandin V, Folda A. et al . Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells.  Free Radic Biol Med. 2007;  42 872-881
  • 27 Tiekink ER. Anti-cancer potential of gold complexes.  Inflammopharmacology. 2008;  16 138-142
  • 28 Inubushi T, Okada M, Matsui A. et al . Effect of dietary vitamin B6 contents on antibody production.  Biofactors. 2000;  11 93-96
  • 29 Katunuma N, Matsui A, Endo K. et al . Inhibition of intracellular cathepsin activities and suppression of immune responses mediated by helper T lymphocyte type-2 by peroral or intraperitoneal administration of vitamin B.  Biochem Biophys Res Commun. 2000;  272 151-155
  • 30 Katunuma N, Matsunaga Y, Matsui A. et al . Novel physiological functions of cathepsins B and L on antigen processing and osteoclastic bone resorption.  Adv Enzyme Regul. 1998;  38 235-251
  • 31 Snodgrass SR. Vitamin neurotoxicity.  Mol Neurobiol. 1992;  6 41-73
  • 32 Guo M, Mathieu PA, Linebaugh B. et al . Phorbol ester activation of a proteolytic cascade capable of activating latent transforming growth factor-beta. A process initiated by the exocytosis of cathepsin B.  J Biol Chem. 2002;  277 14829-14837
  • 33 Kobayashi H, Moniwa N, Sugimura M. et al . Effects of membrane-associated cathepsin B on the activation of receptor-bound pro-urokinase and subsequent invasion of reconstituted basement membranes.  Biochim Biophys Acta. 1993;  1178 55-62
  • 34 Salajegheh M, Rudnicki A, Smith TW. Expression of urokinase-type plasminogen activator receptor (uPAR) in primary central nervous system neoplasms.  Appl Immunohistochem Mol Morphol. 2005;  13 184-189
  • 35 Zhao Y, Lyons Jr CE, Xiao A. et al . Urokinase directly activates matrix metalloproteinases-9: a potential role in glioblastoma invasion.  Biochem Biophys Res Commun. 2008;  369 1215-1220
  • 36 Gole B, Durán Alonso MB, Dolenc V. et al . Post-translational regulation of cathepsin B, but not of other cysteine cathepsins, contributes to increased glioblastoma cell invasiveness in vitro.  Pathol Oncol Res. 2009 May;  13 [Epub ahead of print] PMID: 19434518
  • 37 Kast RE. Why cerebellar glioblastoma is rare and how that indicates adjunctive use of the FDA-approved anti-emetic aprepitant might retard cerebral glioblastoma growth: a new hypothesis to an old question.  Clin Transl Oncol. 2009;  11 (7) 408-410
  • 38 Kast RE, Belda-Iniesta C. Suppressing glioblastoma stem cell function by aldehyde dehydrogenase inhibition with chloramphenicol or disulfiram as a new treatment adjunct: An hypothesis.  Curr Stem Cell Res Ther. 2009 Dec;  1 [Epub ahead of print] PubMed PMID: 19500061
  • 39 Kast RE, Altschuler EL. Current drugs available now for interleukin-6 suppression as treatment adjunct in glioblastoma: anakinra, aprepitant, mirtazapine and olanzapine.  Int J Cancer Res. 2006;  2 303-314
  • 40 Kuhn SA, Mueller U, Hanisch UK. et al . Glioblastoma cells express functional cell membrane receptors activated by daily used medical drugs.  J Cancer Res Clin Oncol. 2009 Jun;  19 PubMed PMID: 19543745
  • 41 Carapancea M, Alexandru O, Fetea AS. et al . Growth factor receptors signaling in glioblastoma cells: therapeutic implications.  J Neurooncol. 2009;  92 (2) 137-147

Correspondence

Dr. R. E. Kast

University of Vermont Psychiatry

22 Church Street

05401 Burlington

United States

Phone: 8028632462

Fax: 8028632462

Email: rekast@email.com