Subscribe to RSS
DOI: 10.1055/s-0029-1243601
© Georg Thieme Verlag KG Stuttgart · New York
TASK1 and TASK3 Potassium Channels: Determinants of Aldosterone Secretion and Adrenocortical Zonation
Publication History
received 30.09.2009
accepted 23.11.2009
Publication Date:
04 January 2010 (online)

Abstract
Potassium channels control the membrane voltage of aldosterone-producing zona glomerulosa cells. They are responsible for the unique K+ sensitivity of these cells and are important molecular targets of angiotensin II signaling. Among the 78 pore-forming K+ channels in human genome only a few are found in adrenal glands. The 2-P-domain K+ channels TASK1 and TASK3 are strongly expressed in the adrenal cortex and produce a background K+ conductance, which is pivotal for the regulation of the aldosterone secretion in zona glomerulosa cells. Disruption of the TASK1 gene in mice resulted in an autonomous aldosterone production and caused a remarkable aberrant expression of aldosterone synthase in zona fasciculata cells that normally produce glucocorticoids. After puberty, only in male mice aldosterone production was switched off in the zona fasciculata and regular zonation of aldosterone synthase occurred. In double mutant TASK1 –/– /TASK3 –/– mice, also adult male mice displayed primary hyperaldosteronism. Therefore, these knockout mice are interesting models to study mechanisms of autonomous aldosterone production and adrenocortical zonation. These data suggest that modifications of the adrenocortical K+ conductances could also contribute to autonomic aldosterone production and primary hyperaldosteronism in humans.
Key words
K2P - KCNK2 - KCNK3 - KCNK9 - adrenocortical zonation - aldosterone - angiotensin II - adrenal cortex
References
- 1
Willenberg HS, Schinner S, Ansurudeen I.
New mechanisms to control aldosterone synthesis.
Horm Metab Res.
2008;
40
435-441
MissingFormLabel
- 2
Spat A, Hunyady L.
Control of aldosterone secretion: a model for convergence in cellular signaling pathways.
Physiol Rev.
2004;
84
489-539
MissingFormLabel
- 3
Bassett MH, White PC, Rainey WE.
The regulation of aldosterone synthase expression.
Mol Cell Endocrinol.
2004;
217
67-74
MissingFormLabel
- 4
Cherradi N, Brandenburger Y, Rossier MF, Vallotton MB, Stocco DM, Capponi AM.
Atrial natriuretic peptide inhibits calcium-induced steroidogenic acute regulatory
protein gene transcription in adrenal glomerulosa cells.
Mol Endocrinol.
1998;
12
962-972
MissingFormLabel
- 5
Ganz MB, Nee JJ, Isales CM, Barrett PQ.
Atrial natriuretic peptide enhances activity of potassium conductance in adrenal glomerulosa
cells.
Am J Physiol.
1994;
266
C1357-C1365
MissingFormLabel
- 6
Spat A.
Glomerulosa cell – a unique sensor of extracellular K+ concentration.
Mol Cell Endocrinol.
2004;
217
23-26
MissingFormLabel
- 7
Lotshaw DP.
Role of membrane depolarization and T-type Ca2+ channels in angiotensin II and K+
stimulated aldosterone secretion.
Mol Cell Endocrinol.
2001;
175
157-171
MissingFormLabel
- 8
Liu H, Enyeart JA, Enyeart JJ.
Angiotensin II inhibits native bTREK-1 K+ channels through a PLC-, kinase C-, and
PIP2-independent pathway requiring ATP hydrolysis.
Am J Physiol Cell Physiol.
2007;
293
C682-C695
MissingFormLabel
- 9
Chen X, Talley EM, Patel N, Gomis A, McIntire WE, Dong B, Viana F, Garrison JC, Bayliss DA.
Inhibition of a background potassium channel by Gq protein alpha-subunits.
Proc Natl Acad Sci U S A.
2006;
103
3422-3427
MissingFormLabel
- 10
Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P, Logothetis DE.
PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating
of two-pore domain K+ channels.
J Physiol.
2005;
564
117-129
MissingFormLabel
- 11
Veale EL, Kennard LE, Sutton GL, MacKenzie G, Sandu C, Mathie A.
G(alpha)q-mediated regulation of TASK3 two-pore domain potassium channels: the role
of protein kinase C.
Mol Pharmacol.
2007;
71
1666-1675
MissingFormLabel
- 12
Nogueira E, Xing Y, Morris C, Rainey WE.
Role of angiotensin II-induced rapid response genes in the regulation of enzymes needed
for aldosterone synthesis.
J Mol Endocrinol.
2009;
42
319-330
MissingFormLabel
- 13
Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Soltys S, Koch WJ.
An adrenal beta-arrestin 1-mediated signaling pathway underlies angiotensin II-induced
aldosterone production in vitro and in vivo.
Proc Natl Acad Sci U S A.
2009;
106
5825-5830
MissingFormLabel
- 14
Born-Frontsberg E, Reincke M, Beuschlein F, Quinkler M.
Tumor size of Conn's adenoma and comorbidities.
Horm Metab Res.
2009;
41
785-788
MissingFormLabel
- 15
Young WF.
Primary aldosteronism: renaissance of a syndrome.
Clin Endocrinol (Oxf).
2007;
66
607-618
MissingFormLabel
- 16
Zajicek G, Ariel I, Arber N.
The streaming adrenal cortex: direct evidence of centripetal migration of adrenocytes
by estimation of cell turnover rate.
J Endocrinol.
1986;
111
477-482
MissingFormLabel
- 17
Kim AC, Hammer GD.
Adrenocortical cells with stem/progenitor cell properties: recent advances.
Mol Cell Endocrinol.
2007;
265–266
10-16
MissingFormLabel
- 18
Mesiano S, Jaffe RB.
Developmental and functional biology of the primate fetal adrenal cortex.
Endocr Rev.
1997;
18
378-403
MissingFormLabel
- 19
Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ.
Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of
Andersen's syndrome.
Cell.
2001;
105
511-519
MissingFormLabel
- 20
Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, Tong JJ, Spiegel L, Nguyen KC, Servoss A, Peng Y, Pei L, Marks JR, Lowe S, Hoey T, Jan LY, McCombie WR, Wigler MH, Powers S.
Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene.
Cancer Cell.
2003;
3
297-302
MissingFormLabel
- 21
Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T.
Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function.
Proc Natl Acad Sci U S A.
2003;
100
7803-7807
MissingFormLabel
- 22
Kunzelmann K.
Ion channels and cancer.
J Membr Biol.
2005;
205
159-173
MissingFormLabel
- 23
Bayliss DA, Barrett PQ.
Emerging roles for two-pore-domain potassium channels and their potential therapeutic
impact.
Trends Pharmacol Sci.
2008;
29
566-575
MissingFormLabel
- 24
Czirjak G, Enyedi P.
TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells.
Mol Endocrinol.
2002;
16
621-629
MissingFormLabel
- 25
Czirjak G, Fischer T, Spat A, Lesage F, Enyedi P.
TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of
rat adrenal cortex and inhibited by angiotensin II.
Mol Endocrinol.
2000;
14
863-874
MissingFormLabel
- 26
Heitzmann D, Derand R, Jungbauer S, Bandulik S, Sterner C, Schweda F, El Wakil A, Lalli E, Guy N, Mengual R, Reichold M, Tegtmeier I, Bendahhou S, Gomez-Sanchez CE, Aller MI, Wisden W, Weber A, Lesage F, Warth R, Barhanin J.
Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid
homeostasis.
EMBO J.
2008;
27
179-187
MissingFormLabel
- 27
Davies LA, Hu C, Guagliardo NA, Sen N, Chen X, Talley EM, Carey RM, Bayliss DA, Barrett PQ.
TASK channel deletion in mice causes primary hyperaldosteronism.
Proc Natl Acad Sci U S A.
2008;
105
2203-2208
MissingFormLabel
- 28
Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J.
TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure.
EMBO J.
1996;
15
1004-1011
MissingFormLabel
- 29
Lesage F, Lazdunski M.
Molecular and functional properties of two-pore-domain potassium channels.
Am J Physiol Renal Physiol.
2000;
279
F793-F801
MissingFormLabel
- 30
Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M.
TASK, a human background K+ channel to sense external pH variations near physiological
pH.
EMBO J.
1997;
16
5464-5471
MissingFormLabel
- 31
Brauneis U, Vassilev PM, Quinn SJ, Williams GH, Tillotson DL.
ANG II blocks potassium currents in zona glomerulosa cells from rat, bovine, and human
adrenals.
Am J Physiol.
1991;
260
E772-E779
MissingFormLabel
- 32
Payet MD, Benabderrazik M, Gallo-Payet N.
Excitation-secretion coupling: ionic currents in glomerulosa cells: effects of adrenocorticotropin
and K+ channel blockers.
Endocrinology.
1987;
121
875-882
MissingFormLabel
- 33
Lotshaw DP.
Characterization of angiotensin II-regulated K+ conductance in rat adrenal glomerulosa
cells.
J Membr Biol.
1997;
156
261-277
MissingFormLabel
- 34
Payet MD, Durroux T, Bilodeau L, Guillon G, Gallo-Payet N.
Characterization of K+ and Ca2+ ionic currents in glomerulosa cells from human adrenal
glands.
Endocrinology.
1994;
134
2589-2598
MissingFormLabel
- 35
Patel AJ, Honore E.
Properties and modulation of mammalian 2P domain K+ channels.
Trends Neurosci.
2001;
24
339-346
MissingFormLabel
- 36
Enyeart JJ, Danthi SJ, Liu H, Enyeart JA.
Angiotensin II inhibits bTREK-1 K+ channels in adrenocortical cells by separate Ca2+-
and ATP hydrolysis-dependent mechanisms.
J Biol Chem.
2005;
280
30814-30828
MissingFormLabel
- 37
Enyeart JA, Danthi SJ, Enyeart JJ.
TREK-1 K+ channels couple angiotensin II receptors to membrane depolarization and
aldosterone secretion in bovine adrenal glomerulosa cells.
Am J Physiol Endocrinol Metab.
2004;
287
E1154-E1165
MissingFormLabel
- 38
Enyeart JJ, Xu L, Danthi S, Enyeart JA.
An ACTH- and ATP-regulated background K+ channel in adrenocortical cells is TREK-1.
J Biol Chem.
2002;
277
49186-49199
MissingFormLabel
- 39
Liu H, Enyeart JA, Enyeart JJ.
ACTH inhibits bTREK-1 K+ channels through multiple cAMP-dependent signaling pathways.
J Gen Physiol.
2008;
132
279-294
MissingFormLabel
- 40
Wada A, Ohnishi T, Nonaka Y, Okamoto M, Yamano T.
Synthesis of aldosterone by a reconstituted system of cytochrome P-45011 beta from
bovine adrenocortical mitochondria.
J Biochem.
1985;
98
245-256
MissingFormLabel
- 41
Lisurek M, Bernhardt R.
Modulation of aldosterone and cortisol synthesis on the molecular level.
Mol Cell Endocrinol.
2004;
215
149-159
MissingFormLabel
- 42
Brenner T, O'Shaughnessy KM.
Both TASK-3 and TREK-1 two-pore loop K channels are expressed in H295R cells and modulate
their membrane potential and aldosterone secretion.
Am J Physiol Endocrinol Metab.
2008;
295
E1480-E1486
MissingFormLabel
- 43
Bayliss DA, Sirois JE, Talley EM.
The TASK family: two-pore domain background K+ channels.
Mol Interv.
2003;
3
205-219
MissingFormLabel
- 44
Decher N, Maier M, Dittrich W, Gassenhuber J, Bruggemann A, Busch AE, Steinmeyer K.
Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium
channel family.
FEBS Lett.
2001;
492
84-89
MissingFormLabel
- 45
Kim D, Gnatenco C.
TASK-5, a new member of the tandem-pore K(+) channel family.
Biochem Biophys Res Commun.
2001;
284
923-930
MissingFormLabel
- 46
Lotshaw DP.
Biophysical and pharmacological characteristics of native two-pore domain TASK channels
in rat adrenal glomerulosa cells.
J Membr Biol.
2006;
210
51-70
MissingFormLabel
- 47
Radke KJ, Taylor RE, Schneider EG.
Effect of hydrogen ion concentration on aldosterone secretion by isolated perfused
canine adrenal glands.
J Endocrinol.
1986;
110
293-301
MissingFormLabel
- 48
Czirjak G, Enyedi P.
Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain
potassium channel subunits.
J Biol Chem.
2002;
277
5426-5432
MissingFormLabel
- 49
Clarke CE, Veale EL, Green PJ, Meadows HJ, Mathie A.
Selective block of the human 2-P domain potassium channel, TASK-3, and the native
leak potassium current, IKSO, by zinc.
J Physiol.
2004;
560
51-62
MissingFormLabel
- 50
Maingret F, Patel AJ, Lazdunski M, Honore E.
The endocannabinoid anandamide is a direct and selective blocker of the background
K(+) channel TASK-1.
EMBO J.
2001;
20
47-54
MissingFormLabel
- 51
Lesage F, Reyes R, Fink M, Duprat F, Guillemare E, Lazdunski M.
Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge.
EMBO J.
1996;
15
6400-6407
MissingFormLabel
- 52
Kang D, Han J, Talley EM, Bayliss DA, Kim D.
Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells.
J Physiol.
2004;
554
64-77
MissingFormLabel
- 53
Linden AM, Aller MI, Leppa E, Vekovischeva O, Aitta-Aho T, Veale EL, Mathie A, Rosenberg P, Wisden W, Korpi ER.
The in vivo contributions of TASK-1-containing channels to the actions of inhalation
anesthetics, the alpha(2) adrenergic sedative dexmedetomidine, and cannabinoid agonists.
J Pharmacol Exp Ther.
2006;
317
615-626
MissingFormLabel
- 54
Meuth SG, Aller MI, Munsch T, Schuhmacher T, Seidenbecher T, Meuth P, Kleinschnitz C, Pape HC, Wiendl H, Wisden W, Budde T.
The contribution of TWIK-related acid-sensitive K+-containing channels to the function
of dorsal lateral geniculate thalamocortical relay neurons.
Mol Pharmacol.
2006;
69
1468-1476
MissingFormLabel
- 55
Aller MI, Veale EL, Linden AM, Sandu C, Schwaninger M, Evans LJ, Korpi ER, Mathie A, Wisden W, Brickley SG.
Modifying the subunit composition of TASK channels alters the modulation of a leak
conductance in cerebellar granule neurons.
J Neurosci.
2005;
25
11455-11467
MissingFormLabel
- 56
Linden AM, Aller MI, Leppa E, Rosenberg PH, Wisden W, Korpi ER.
K+ channel TASK-1 knockout mice show enhanced sensitivities to ataxic and hypnotic
effects of GABA(A) receptor ligands.
J Pharmacol Exp Ther.
2008;
327
277-286
MissingFormLabel
- 57
Trapp S, Aller MI, Wisden W, Gourine AV.
A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing.
J Neurosci.
2008;
28
8844-8850
MissingFormLabel
- 58
Romero DG, Yanes LL, de Rodriguez AF, Plonczynski MW, Welsh BL, Reckelhoff JF, Gomez-Sanchez EP, Gomez-Sanchez CE.
Disabled-2 is expressed in adrenal zona glomerulosa and is involved in aldosterone
secretion.
Endocrinology.
2007;
148
2644-2652
MissingFormLabel
- 59
Gummow BM, Scheys JO, Cancelli VR, Hammer GD.
Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription
complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in
the adrenal cortex.
Mol Endocrinol.
2006;
20
2711-2723
MissingFormLabel
- 60
Ashmole I, Goodwin PA, Stanfield PR.
TASK-5, a novel member of the tandem pore K+ channel family.
Pflugers Arch.
2001;
442
828-833
MissingFormLabel
- 61
Karschin C, Wischmeyer E, Preisig-Muller R, Rajan S, Derst C, Grzeschik KH, Daut J, Karschin A.
Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel
subunit, TASK-5, associated with the central auditory nervous system.
Mol Cell Neurosci.
2001;
18
632-648
MissingFormLabel
- 62
Jespersen T, Grunnet M, Olesen SP.
The KCNQ1 potassium channel: from gene to physiological function.
Physiology (Bethesda).
2005;
20
408-416
MissingFormLabel
- 63
Arrighi I, Bloch-Faure M, Grahammer F, Bleich M, Warth R, Mengual R, Drici MD, Barhanin J, Meneton P.
Altered potassium balance and aldosterone secretion in a mouse model of human congenital
long QT syndrome.
Proc Natl Acad Sci U S A.
2001;
98
8792-8797
MissingFormLabel
- 64
Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, Gerlach U, Rong Q, Pfeifer K, Lang F.
KCNQ1-dependent transport in renal and gastrointestinal epithelia.
Proc Natl Acad Sci U S A.
2005;
102
17864-17869
MissingFormLabel
- 65
Sarzani R, Pietrucci F, Francioni M, Salvi F, Letizia C, D'Erasmo E, Dessi FP, Rappelli A.
Expression of potassium channel isoforms mRNA in normal human adrenals and aldosterone-secreting
adenomas.
J Endocrinol Invest.
2006;
29
147-153
MissingFormLabel
- 66
Abbott GW, Goldstein SA.
Potassium channel subunits encoded by the KCNE gene family: physiology and pathophysiology
of the MinK-related peptides (MiRPs).
Mol Interv.
2001;
1
95-107
MissingFormLabel
- 67
Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Volkl H, Warth R.
Role of KCNE1-dependent K+ fluxes in mouse proximal tubule.
J Am Soc Nephrol.
2001;
12
2003-2011
MissingFormLabel
- 68
Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit-Drews P, Feil R, Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, Korth M, Schubert R, Gollasch M, Ruth P.
Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation
in BK channel-deficient mice.
Circulation.
2005;
112
60-68
MissingFormLabel
- 69
Grimm PR, Irsik DL, Settles DC, Holtzclaw JD, Sansom SC.
Hypertension of Kcnmb1-/- is linked to deficient K secretion and aldosteronism.
Proc Natl Acad Sci U S A.
2009;
106
11800-11805
MissingFormLabel
- 70
Knaus HG, Garcia-Calvo M, Kaczorowski GJ, Garcia ML.
Subunit composition of the high conductance calcium-activated potassium channel from
smooth muscle, a representative of the mSlo and slowpoke family of potassium channels.
J Biol Chem.
1994;
269
3921-3924
MissingFormLabel
- 71
Meera P, Wallner M, Song M, Toro L.
Large conductance voltage- and calcium-dependent K+ channel, a distinct member of
voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6),
an extracellular N terminus, and an intracellular (S9-S10) C terminus.
Proc Natl Acad Sci U S A.
1997;
94
14066-14071
MissingFormLabel
- 72
Sorensen MV, Matos JE, Sausbier M, Sausbier U, Ruth P, Praetorius HA, Leipziger J.
Aldosterone increases KCa1.1 (BK) channel-mediated colonic K+ secretion.
J Physiol.
2008;
586
4251-4264
MissingFormLabel
- 73
Lifton RP, Dluhy RG, Powers M, Rich GM, Gutkin M, Fallo F, Gill JR, Feld L, Ganguly A, Laidlaw JC.
Hereditary hypertension caused by chimaeric gene duplications and ectopic expression
of aldosterone synthase.
Nat Genet.
1992;
2
66-74
MissingFormLabel
- 74
Gordon RD, Stowasser M, Klemm SA, Tunny TJ.
Primary aldosteronism--some genetic, morphological, and biochemical aspects of subtypes.
Steroids.
1995;
60
35-41
MissingFormLabel
- 75
Mulatero P, Veglio F, Pilon C, Rabbia F, Zocchi C, Limone P, Boscaro M, Sonino N, Fallo F.
Diagnosis of glucocorticoid-remediable aldosteronism in primary aldosteronism: aldosterone
response to dexamethasone and long polymerase chain reaction for chimeric gene.
J Clin Endocrinol Metab.
1998;
83
2573-2575
MissingFormLabel
- 76
Fardella CE, Pinto M, Mosso L, Gomez-Sanchez C, Jalil J, Montero J.
Genetic study of patients with dexamethasone-suppressible aldosteronism without the
chimeric CYP11B1/CYP11B2 gene.
J Clin Endocrinol Metab.
2001;
86
4805-4807
MissingFormLabel
- 77
Wotus C, Levay-Young BK, Rogers LM, Gomez-Sanchez CE, Engeland WC.
Development of adrenal zonation in fetal rats defined by expression of aldosterone
synthase and 11beta-hydroxylase.
Endocrinology.
1998;
139
4397-4403
MissingFormLabel
- 78
Enyeart JA, Danthi S, Enyeart JJ.
Corticotropin induces the expression of TREK-1 mRNA and K+ current in adrenocortical
cells.
Mol Pharmacol.
2003;
64
132-142
MissingFormLabel
- 79
Kanazirska MV, Vassilev PM, Quinn SJ, Tillotson DL, Williams GH.
Single K+ channels in adrenal zona glomerulosa cells. II. Inhibition by angiotensin
II.
Am J Physiol.
1992;
263
E760-E765
MissingFormLabel
- 80
Vassilev PM, Kanazirska MV, Quinn SJ, Tillotson DL, Williams GH.
K+ channels in adrenal zona glomerulosa cells. I. Characterization of distinct channel
types.
Am J Physiol.
1992;
263
E752-E759
MissingFormLabel
Correspondence
Prof. Dr. R. Warth
Institut für Physiologie
NWF III – VKL
Universitätsstraße 31
93053 Regensburg
Germany
Phone: +49 941 943 2894
Fax: +49 941 943 2896
Email: richard.warth@vkl.uni-regensburg.de