Pneumologie 2010; 64(6): 376-386
DOI: 10.1055/s-0029-1243974
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Neue Strategien beim NSCLC: Was bringt die Hemmung der Tumorgefäße?

New Strategies for NSCLC: Is Inhibition of Tumour Vasculature Useful?N.  Reinmuth1 , M.  Steins1 , M.  Kreuter2 , M.  Thomas1
  • 1Abteilung für Internistische Onkologie der Thoraxtumoren, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg
  • 2Abteilung für Pneumologie und Beatmungsmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg
Further Information

Publication History

eingereicht 15. 12. 2009

akzeptiert nach Revision 3. 2. 2010

Publication Date:
12 March 2010 (online)

Zusammenfassung

Lungenkarzinome sind die am häufigsten zum Tode führenden Tumorerkrankungen in Deutschland. Das verbesserte Verständnis der Tumorbiologie und der Bedeutung eines funktionellen Gefäßsystems für das Wachstum und die Metastasierung solider Tumoren resultierte in der Entwicklung neuer Substanzen, die vorwiegend das Gefäßsystem des Tumors zerstören sollen. Anti-angiogene Substanzen hemmen die Neuentstehung von Gefäßen aus dem bereits existierenden Gefäßsystem und können die Gefäßstabilität beeinflussen. Mit Bevacizumab wurde bereits ein monoklonaler anti-VEGF-(vascular endothelial growth factor)-Antikörper zur Erstlinien-Behandlung des metastasierten oder fortgeschrittenen nicht kleinzelligen Lungenkarzinoms (NSCLC) ohne dominierende Plattenepithelhistologie in Kombination mit Platin-basierter Chemotherapie zugelassen. Klinische Studien zeigten vielversprechende Daten auch für die Kombination von klein-molekularen multi-Tyrosinkinase-Inhibitoren mit Zytostatika. Als differenter Therapieansatz wurden gefäßzerstörende Substanzen (Vascular Disrupting Agents, VDAs) entwickelt, die insbesondere etablierte Blutgefäße im Tumor zerstören sollen. In der vorliegenden Übersicht werden die Wirkprinzipien von anti-angiogenen Therapeutika und VDAs beschrieben und die aktuelle klinische Datenlage zusammengefasst.

Abstract

Lung cancer is the leading cause of cancer-related mortality in Germany. Improvements in our understanding of cancer biology have led to the development of novel agents that inhibit the tumour vasculature in order to induce subsequent tumour cell death. In this context, the inhibition of tumour-related angiogenesis - the growth of new vessels from pre-existing vessels – has become an attractive target for anticancer therapy. Bevacizumab, a monoclonal antibody against vascular endothelial growth factor (VEGF), has already been approved in combination with platinum-based chemotherapy in patients with advanced non–small cell lung cancer (NSCLC) without predominant squamous cell histology. Moreover, small molecule inhibitors targeting multiple angiogenic receptors have also shown promise when combined with standard chemotherapy. As a different approach, vascular disrupting agents (VDAs) have been designed to particularly target preexisting blood vessels which may lead to a vascular shut-down. In the present review, both principles of action and current clinical data on anti-angiogenic agents and VDAs in the treatment of patients with NSCLC are reviewed.

Literatur

  • 1 Thomas M, Rube C, Hoffknecht P. et al . Effect of preoperative chemoradiation in addition to preoperative chemotherapy: a randomised trial in stage III non-small-cell lung cancer.  Lancet Oncol. 2008;  9 636-648
  • 2 Mountain C F. Revisions in the International System for Staging Lung Cancer.  Chest. 1997;  111 1710-1717
  • 3 Parkin D M, Pisani P, Ferlay J. Global cancer statistics.  CA Cancer J Clin. 1999;  49 33-64, 31
  • 4 Souhami R L, Law K. Longevity in small cell lung cancer. A report to the Lung Cancer Subcommittee of the United Kingdom Coordinating Committee for Cancer Research.  Br J Cancer. 1990;  61 584-589
  • 5 Hanahan D, Weinberg R A. The hallmarks of cancer.  Cell. 2000;  100 57-70
  • 6 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med. 1971;  285 1182-1186
  • 7 Reinmuth N, Stoeltzing O, Liu W. et al . Endothelial survival factors as targets for antineoplastic therapy.  Cancer J. 2001;  7 Suppl 3 S109-S119
  • 8 Hicklin D J, Ellis L M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.  J Clin Oncol. 2005;  23 1011-1027
  • 9 Korff T, Kimmina S, Martiny-Baron G, Augustin H G. Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness.  FASEB J. 2001;  15 447-457
  • 10 Yano S, Nishioka Y, Goto H, Sone S. Molecular mechanisms of angiogenesis in non-small cell lung cancer, and therapeutics targeting related molecules.  Cancer Sci. 2003;  94 479-485
  • 11 Dome B, Timar J, Dobos J. et al . Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer.  Cancer Res. 2006;  66 7341-7347
  • 12 Mancuso P, Burlini A, Pruneri G. et al . Resting and activated endothelial cells are increased in the peripheral blood of cancer patients.  Blood. 2001;  97 3658-3661
  • 13 Holash J, Maisonpierre P C, Compton D. et al . Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF.  Science. 1999;  284 1994-1998
  • 14 Reinmuth N, Piegelbrock E, Raedel M. et al . Prognostic significance of vessel architecture and vascular stability in non-small cell lung cancer.  Lung Cancer. 2007;  55 53-60
  • 15 Mandarino L J, Sundarraj N, Finlayson J, Hassell H R. Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro.  Exp Eye Res. 1993;  57 609-621
  • 16 Cleaver O, Melton D A. Endothelial signaling during development.  Nat Med. 2003;  9 661-668
  • 17 Reinmuth N, Liersch R, Raedel M. et al . Combined anti-PDGFRalpha and PDGFRbeta targeting in non-small cell lung cancer.  Int J Cancer. 2009;  124 1535-1544
  • 18 Eberhard A, Kahlert S, Goede V. et al . Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies.  Cancer Res. 2000;  60 1388-1393
  • 19 Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases.  Nature. 2000;  407 249-257
  • 20 Folkman J. Angiogenesis.  Annu Rev Med. 2006;  57 1-18
  • 21 Chaplin D J, Dougherty G J. Tumour vasculature as a target for cancer therapy.  Br J Cancer. 1999;  80 Suppl 1 57-64
  • 22 Mueller M M, Fusenig N E. Friends or foes - bipolar effects of the tumour stroma in cancer.  Nat Rev Cancer. 2004;  4 839-849
  • 23 Paez-Ribes M, Allen E, Hudock J. et al . Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis.  Cancer Cell. 2009;  15 220-231
  • 24 Ferrara N, Gerber H P, LeCouter J. The biology of VEGF and its receptors.  Nat Med. 2003;  9 669-676
  • 25 Ma J, Waxman D J. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment.  Mol Cancer Ther. 2008;  7 3670-3684
  • 26 Fontanini G, Vignati S, Boldrini L. et al . Vascular endothelial growth factor is associated with neovascularization and influences progression of non-small cell lung carcinoma.  Clin Cancer Res. 1997;  3 861-865
  • 27 Reck M, Pawel J von, Zatloukal P. et al . Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil.  J Clin Oncol. 2009;  27 1227-1234
  • 28 Sandler A, Gray R, Perry M C. et al . Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.  N Engl J Med. 2006;  355 2542-2550
  • 29 Jain R K, Booth M F. What brings pericytes to tumor vessels?.  J Clin Invest. 2003;  112 1134-1136
  • 30 Ebos J M, Lee C R, Kerbel R S. Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy.  Clin Cancer Res. 2009;  15 5020-5025
  • 31 Shaked Y, Ciarrocchi A, Franco M. et al . Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors.  Science. 2006;  313 1785-1787
  • 32 Casanovas O, Hicklin D J, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors.  Cancer Cell. 2005;  8 299-309
  • 33 Donnem T, Al-Shibli K, Al-Saad S, Busund L T, Bremnes R M. Prognostic impact of fibroblast growth factor 2 in non-small cell lung cancer: coexpression with VEGFR-3 and PDGF-B predicts poor survival.  J Thorac Oncol. 2009;  4 578-585
  • 34 Johnson D H, Fehrenbacher L, Novotny W F. et al . Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer.  J Clin Oncol. 2004;  22 2184-2191
  • 35 Socinski M A, Langer C J, Huang J E. et al . Safety of Bevacizumab in Patients With Non-Small-Cell Lung Cancer and Brain Metastases.  J Clin Oncol. 2009;  27 5255-5261
  • 36 Rohr U P, Augustus S, Lasserre S F, Compton P, Huang J. Safety of bevacizumab in patients with metastases to the central nervous system.  J Clin Oncol. 2009;  27 a2007
  • 37 Ramalingam S S, Dahlberg S E, Langer C J. et al . Outcomes for elderly, advanced-stage non small-cell lung cancer patients treated with bevacizumab in combination with carboplatin and paclitaxel: analysis of Eastern Cooperative Oncology Group Trial 4599.  J Clin Oncol. 2008;  26 60-65
  • 38 Leighl N B, Zatloukal P, Mezger J. et al . Efficacy and safety of first-line bevacizumab (Bv) and cisplatin/gemcitabine (CG) in elderly patients (pts) with advanced non-small cell lung cancer (NSCLC) in the BO17704 study (AVAiL).  J Clin Oncol. 2009;  27 a8050
  • 39 Hilberg F, Roth G J, Krssak M. et al . BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy.  Cancer Res. 2008;  68 4774-4782
  • 40 Wilhelm S M, Carter C, Tang L. et al . BAY 43 – 9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis.  Cancer Res. 2004;  64 7099-7109
  • 41 Schiller J H, Lee J W, Hanna N H, Traynor A M, Carbone D P. A randomized discontinuation phase II study of sorafenib versus placebo in patients with non-small cell lung cancer who have failed at least two prior chemotherapy regimens: E2501.  J Clin Oncol. 2008;  26 a8014
  • 42 Scagliotti G, Pawel J von, Reck M. et al .Phase III trial comparing carboplatin and paclitaxel with or without sorafenib in chemonaive patients with stage IIIB (with effusion) or IV non-small cell lung cancer. In, 1st IASLC-ESMO European Lung Cancer Conference. Geneva (Switzerland); 2008
  • 43 Horn L, Sandler A. Epidermal growth factor receptor inhibitors and antiangiogenic agents for the treatment of non-small cell lung cancer.  Clin Cancer Res. 2009;  15 5040-5048
  • 44 Mendel D B, Laird A D, Xin X. et al . In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship.  Clin Cancer Res. 2003;  9 327-337
  • 45 Socinski M A, Novello S, Brahmer J R. et al . Multicenter, phase II trial of sunitinib in previously treated, advanced non-small-cell lung cancer.  J Clin Oncol. 2008;  26 650-656
  • 46 Brahmer J R, Govindan R, Novello S. et al . Efficacy and safety of continuous daily sunitinib dosing in previously treated advanced non-small cell lung cancer (NSCLC): Results from a phase II study.  J Clin Oncol. 2007;  25 a7542
  • 47 Reck M, Frickhofen N, Gatzemeier U. et al . A phase I dose escalation study of sunitinib in combination with gemcitabine + cisplatin for advanced non-small cell lung cancer (NSCLC).  J Clin Oncol. 2007;  25 a18057
  • 48 Wedge S R, Ogilvie D J, Dukes M. et al . ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration.  Cancer Res. 2002;  62 4645-4655
  • 49 Ciardiello F, Bianco R, Caputo R. et al . Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy.  Clin Cancer Res. 2004;  10 784-793
  • 50 Santoro M, Melillo R M, Carlomagno F, Fusco A, Vecchio G. Molecular mechanisms of RET activation in human cancer.  Ann N Y Acad Sci. 2002;  963 116-121
  • 51 Kiura K, Nakagawa K, Shinkai T. et al . A randomized, double-blind, phase IIa dose-finding study of Vandetanib (ZD6474) in Japanese patients with non-small cell lung cancer.  J Thorac Oncol. 2008;  3 386-393
  • 52 Natale R B, Bodkin D, Govindan R. et al . Vandetanib versus gefitinib in patients with advanced non-small-cell lung cancer: results from a two-part, double-blind, randomized phase ii study.  J Clin Oncol. 2009;  27 2523-2529
  • 53 Heymach J V, Johnson B E, Prager D. et al . Randomized, placebo-controlled phase II study of vandetanib plus docetaxel in previously treated non small-cell lung cancer.  J Clin Oncol. 2007;  25 4270-4277
  • 54 Heymach J V, Paz-Ares L, De Braud F. et al . Randomized phase II study of vandetanib alone or with paclitaxel and carboplatin as first-line treatment for advanced non-small-cell lung cancer.  J Clin Oncol. 2008;  26 5407-5415
  • 55 Herbst R S, Sun Y, Korfee S. et al . Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small cell lung cancer (NSCLC): A randomized, double-blind phase III trial (ZODIAC).  J Clin Oncol. 2009;  27 cra8003
  • 56 DeBoer R, Arrieta Ó, Gottfried M. et al . Vandetanib plus pemetrexed versus pemetrexed as second-line therapy in patients with advanced non-small cell lung cancer (NSCLC): A randomized, double-blind phase III trial (ZEAL).  J Clin Oncol. 2009;  27 a8010
  • 57 Natale R B, Thongprasert S, Greco F A. et al . Vandetanib versus erlotinib in patients with advanced non-small cell lung cancer (NSCLC) after failure of at least one prior cytotoxic chemotherapy: A randomized, double-blind phase III trial (ZEST).  J Clin Oncol. 2009;  27 a8009
  • 58 Sennino B, Falcon B L, McCauley D. et al . Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102.  Cancer Res. 2007;  67 7358-7367
  • 59 Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors.  J Clin Invest. 2003;  111 1287-1295
  • 60 Pawel J von, Kaiser R, Eschbach C. et al . A double blind phase II study of BIBF 1,120 in patients suffering from relapsed advanced non-small cell lung cancer (NSCLC).  J Clin Oncol. 2007;  25 a7635
  • 61 Gatzemeier U, Blumenschein G, Fosella F. et al . Phase II trial of single-agent sorafenib in patients with advanced non-small cell lung carcinoma.  J Clin Oncol. 2006;  24 a7002
  • 62 Hanna N, Ellis P, Stopfer P, Shapiro D, Gyorffy S. A Phase I study of continuous oral treatment with the triple angiokinase inhibitor BIBF 1120 together with pemetrexed in previously treated patients with non-small cell lung cancer: P3 – 091.  J Thoracic Oncol. 2007;  2 S717
  • 63 Mross K B, Gmehling D, Frost A. et al . A clinical Phase I, pharmacokinetic (PK), and pharmacodynamic study of twice daily BIBF 1120 in advanced cancer patients.  J Clin Oncol. 2005;  23 a3031
  • 64 Tozer G M, Kanthou C, Baguley B C. Disrupting tumour blood vessels.  Nat Rev Cancer. 2005;  5 423-435
  • 65 Blakey D C, Westwood F R, Walker M. et al . Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models.  Clin Cancer Res. 2002;  8 1974-1983
  • 66 Lyden D, Hattori K, Dias S. et al . Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth.  Nat Med. 2001;  7 1194-1201
  • 67 Siemann D W, Shi W. Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503).  Anticancer Res. 2008;  28 2027-2031
  • 68 Dark G G, Hill S A, Prise V E. et al . Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature.  Cancer Res. 1997;  57 1829-1834
  • 69 Hinnen P, Eskens F A. Vascular disrupting agents in clinical development.  Br J Cancer. 2007;  96 1159-1165
  • 70 Bilenker J H, Flaherty K T, Rosen M. et al . Phase I trial of combretastatin a-4 phosphate with carboplatin.  Clin Cancer Res. 2005;  11 1527-1533
  • 71 Zwi L J, Baguley B C, Gavin J B, Wilson W R. Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents.  Oncol Res. 1994;  6 79-85
  • 72 McKeage M J, Pawel J von, Reck M. et al . Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer.  Br J Cancer. 2008;  99 2006-2012
  • 73 Jain R K, Duda D G, Sorensen A G. Emerging Paradigms and Potential Biomarkers of Response and Resistance in Antiangiogenic Therapy of Cancer. Educational Book ASCO 2009: 716-721
  • 74 Dowlati A, Gray R, Sandler A B, Schiller J H, Johnson D H. Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non-small cell lung cancer treated with chemotherapy with or without bevacizumab – an Eastern Cooperative Oncology Group Study.  Clin Cancer Res. 2008;  14 1407-1412
  • 75 Leighl N, Reck M, de Haas S. et al . Analysis of biomarkers (BMs) in the AVAiL phase III randomised study of first-line Bevacizumab (Bv) with cisplatin-gemcitabine (CG) in patients (pts) with non-small cell lung cancer (NSCLC).  Eur J Cancer. 2009;  Suppl, Vol. 7 558
  • 76 Vermeulen P B, Gasparini G, Fox S B. et al . Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours.  Eur J Cancer. 2002;  38 1564-1579
  • 77 Mandrekar S J, Sargent D J. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges.  J Clin Oncol. 2009;  27 4027-4034
  • 78 Reinmuth N, Thomas M, Meister M, Schnabel P A, Kreuter M. Current data on predictive markers for anti-angiogenic therapy in thoracic cancers.  submitted to Eur Res J. ; 
  • 79 Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis.  J Nucl Med. 2008;  49 Suppl 2 113S-128S
  • 80 Ellis L M, Hicklin D J. VEGF-targeted therapy: mechanisms of anti-tumour activity.  Nat Rev Cancer. 2008;  8 579-591
  • 81 Shaked Y, Henke E, Roodhart J M. et al . Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents.  Cancer Cell. 2008;  14 263-273
  • 82 Martinelli M, Bonezzi K, Riccardi E. et al . Sequence dependent antitumour efficacy of the vascular disrupting agent ZD6126 in combination with paclitaxel.  Br J Cancer. 2007;  97 888-894
  • 83 Reinmuth N, Bischoff H, Kindermann M, Steins M, Thomas M. Vascular Disrupting Agents beim nicht-kleinzelligen Lungenkarzinom.  Atemwegs- und Lungenkrankheiten. 2009;  35 471-478
  • 84 Laurie S A, Gauthier I, Arnold A. et al . Phase I and pharmacokinetic study of daily oral AZD2171, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with carboplatin and paclitaxel in patients with advanced non-small-cell lung cancer: the National Cancer Institute of Canada clinical trials group.  J Clin Oncol. 2008;  26 1871-1878
  • 85 Heymach J, Paz-Ares L, De Braud F. et al . Randomized phase II study of vandetanib (VAN) alone or in combination with carboplatin and paclitaxel (CP) as first-line treatment for advanced non-small cell lung cancer (NSCLC).  J Clin Oncol. 2007;  25 a7544
  • 86 Rizvi N A, Kris M G, Miller V A. et al . Activity of XL647 in clinically selected NSCLC patients (pts) enriched for the presence of EGFR mutations: Results from Phase 2.  J Clin Oncol. 2008;  26 a8053
  • 87 Schiller J H, Larson T, Ou S H. et al . Efficacy and safety of axitinib in patients with advanced non-small-cell lung cancer: results from a phase II study.  J Clin Oncol. 2009;  27 3836-3841
  • 88 Schiller J H, Flaherty K T, Redlinger M. et al . Sorafenib combined with carboplatin/paclitaxel for advanced non-small cell lung cancer: A phase I subset analysis.  J Clin Oncol. 2006;  24 a7194
  • 89 Latreille J, Batist G, Laberge F. et al . Phase I/II trial of the safety and efficacy of AE-941 (Neovastat) in the treatment of non-small-cell lung cancer.  Clin Lung Cancer. 2003;  4 231-236
  • 90 Miller V A, Wakelee H A, Lara P N. et al . Activity and tolerance of XL647 in NSCLC patients with acquired resistance to EGFR-TKIs: Preliminary results of a phase II trial.  J Clin Oncol. 2008;  26 a8028
  • 91 Stewart D J, Jonker D J, Goel R. et al . Final clinical and pharmacokinetic (PK) results from a phase 1 study of the novel N-cadherin (N-cad) antagonist, Exherin (ADH-1), in patients with refractory solid tumors stratified according to N-cad expression.  J Clin Oncol. 2006;  24 a3016
  • 92 Sessa C, Perotti A, Maur M. et al . An enriched phase I, pharmacokinetic and pharmacodynamic study of the N-cadherin (NCAD) cyclic competitive binder exherin (ADH-1) in patients with solid tumors.  J Clin Oncol. 2006;  24 a3042
  • 93 Tolcher A W, Forero L, Celio P. et al . Phase I, pharmacokinetic, and DCE-MRI correlative study of AVE8062A, an antivascular combretastatin analogue, administered weekly for 3 weeks every 28-days.  J Clin Oncol. 2003;  22 a834
  • 94 Rustin G J, Galbraith S M, Anderson H. et al . Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results.  J Clin Oncol. 2003;  21 2815-2822
  • 95 Stevenson J P, Rosen M, Sun W. et al . Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow.  J Clin Oncol. 2003;  21 4428-4438
  • 96 Dowlati A, Robertson K, Cooney M. et al . A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer.  Cancer Res. 2002;  62 3408-3416
  • 97 Cooney M M, Radivoyevitch T, Dowlati A. et al . Cardiovascular safety profile of combretastatin a4 phosphate in a single-dose phase I study in patients with advanced cancer.  Clin Cancer Res. 2004;  10 96-100
  • 98 Rustin G J, Bradley C, Galbraith S. et al . 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent: phase I clinical and pharmacokinetic study.  Br J Cancer. 2003;  88 1160-1167
  • 99 Jameson M B, Thompson P I, Baguley B C. et al . Clinical aspects of a phase I trial of 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent.  Br J Cancer. 2003;  88 1844-1850
  • 100 de Jonge M J, van der Gaast A, Planting A S. et al . Phase I and pharmacokinetic study of the dolastatin 10 analogue TZT-1027, given on days 1 and 8 of a 3-week cycle in patients with advanced solid tumors.  Clin Cancer Res. 2005;  11 3806-3813
  • 101 Greystoke A, Blagden S, Thomas A L. et al . A phase I study of intravenous TZT-1027 administered on day 1 and day 8 of a three-weekly cycle in combination with carboplatin given on day 1 alone in patients with advanced solid tumours.  Ann Oncol. 2006;  17 1313-1319
  • 102 Schoffski P, Thate B, Beutel G. et al . Phase I and pharmacokinetic study of TZT-1027, a novel synthetic dolastatin 10 derivative, administered as a 1-hour intravenous infusion every 3 weeks in patients with advanced refractory cancer.  Ann Oncol. 2004;  15 671-679
  • 103 Beerepoot L V, Radema S A, Witteveen E O. et al . Phase I clinical evaluation of weekly administration of the novel vascular-targeting agent, ZD6126, in patients with solid tumors.  J Clin Oncol. 2006;  24 1491-1498
  • 104 Gadgeel S M, LoRusso P M, Wozniak A J, Wheeler C. A dose-escalation study of the novel vascular-targeting agent, ZD6126, in patients with solid tumors.  J Clin Oncol. 2002;  21 a438

Dr. med. Niels Reinmuth

Internistische Onkologie der Thoraxtumoren
Thoraxklinik am Universitätsklinikum Heidelberg

Amalienstr. 5
69126 Heidelberg

Email: niels.reinmuth@thoraxklinik-heidelberg.de

    >