Subscribe to RSS
DOI: 10.1055/s-0029-1245125
© Georg Thieme Verlag KG Stuttgart · New York
Was ist oxidativer Stress?
Oxidative Tissue DamagePublication History
Eingegangen: 3.11.2009
Angenommen: 25.12.2009
Publication Date:
12 February 2010 (online)

Zusammenfassung
Oxidativer Stress im chemischen Sinne beschreibt den Zustand der oxidativen Überflutung. Heute wird häufig als oxidativer Stress auch jeder Zustand bezeichnet, der mit einer Erhöhung an Oxidantien oder auch einem Mangel an Antioxidantien sowohl im Gesamtorganismus als auch in einem Organkompartiment einhergeht. Vom molekularen Sauerstoff ausgehend werden in entsprechender Umgebung hochreaktive Metabolite generiert, die entweder direkt schädigend wirken oder die Bildung von Sekundärreaktionen ermöglichen, die schließlich zu oxidativen Prozessen führen. Die Zelle hat zahlreiche Mechanismen und Strategien entwickelt, die potenziell toxische Sauerstoffspezies auf verschiedenen Stufen ihrer Entstehung oder ihrer Reaktion mit Biomolekülen hemmen oder blockieren sollen. Zahlreiche Krankheitsbilder werden mit oxidativem Stress in Verbindung gebracht. Das Auge ist im Vergleich zu anderen Organen insofern vermehrt gefährdet, oxidative Schäden zu erleiden, da es permanent mit oxidativen Stimuli umgehen muss. Die biochemische Zusammensetzung der okulären Strukturen ist ein weiterer Faktor, der diese im Vergleich zu anderen Organen vermehrte oxidative Gefährdung ausmacht. Insbesondere die okuläre bzw. die Netzhautischämie, die diabetische Retinopathie sowie die altersbedingte Makuladegeneration und auch das Glaukom werden mit oxidativen Prozessen in Verbindung gebracht. Während bei der Netzhautischämie die klassischen Generierungsmechanismen von Oxidantien von Relevanz sind, gelten diese bei der diabetischen Retinopathie im Hinblick auf die Generierung oxidativer Metabolite mittlerweile eher als Sekundärreaktionen. Hier stehen heute Glykosylierungsprodukte (AGE’s) und die auch oxidativ induzierbare Expression von Wachstumsfaktoren im Mittelpunkt. Bei der altersbedingten Makuladegeneration scheinen photodynamische Prozesse (v. a. Typ-2-Reaktion), die von Kindheit an ablaufen und auch durch sichtbares, v. a. blaues Licht unterhalten werden, mitverantwortlich für die Entstehung des Krankheitsbilds zu sein. Zusätzlich kann die Induktion des Gefäßwachstums bzw. die Expression von Wachstumsfaktoren über Entzündungsreaktionen aber auch oxidativ erfolgen.
Abstract
Oxidative stress is defined as an overflow of oxidative metabolites either in the human body or in a compartment of the body. Today this chemical definition has been slightly modified and encompasses an elevation of oxidative metabolites or a relative deficiency of anti-oxidants. Molecular oxygen is the basis of many highly reactive oxidative species which are able to directly damage or lead to the generation of secondary reactions which then initiate oxidative processes. The cell has established numerous mechanisms and strategies to antagonise those oxidative processes at different steps. Many diseases have been shown to be either related to or even be initiated by oxidative processes. The eye is at high risk to be damaged by oxidative mechanisms. One major reason is its permanent exposition to oxidative stimuli. The biochemical composition of ocular structures, especially that of the retina (unsaturated fatty acids), is an important factor making the eye more susceptible as compared to other organs. Ocular ischaemia, ischaemia or hypoxia of the retina, diabetic retinopathy and glaucoma are important disease entities that are initiated or propagated by oxidative processes. Ischaemic processes lead to classical reactions of the oxidative pathway. This is no longer believed to be the case in diabetic retinopathy. Here, advanced glycation end products (AGE’s) and related species are able to induce oxidative reactions and the expression of growth factors. In age-related macular degeneration, photodynamic processes that already occur in childhood are believed to be a major factor contributing to the pathogenesis of the disease process. In addition, the expression of growth factors and new vessel growth can be initiated via inflammatory reactions or oxidative metabolites.
Schlüsselwörter
oxidativer Gewebeschaden - Sauerstoff - Antioxidantien - Diabetes mellitus - altersbedingte Makuladegeneration
Key words
oxidative tissue damage - oxygen - anti-oxidants - diabetes - age-related macular degeneration
Literatur
- 1
Albano E, Vidali M.
Immune mechanisms in alcoholic liver disease.
Genes Nutr.
2009;
Oct 7
Epub ahead of print
MissingFormLabel
- 2
Armstrong D, Augustin A J, Spengler R. et al .
Detection of vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha
(TNF α) in epiretinal membranes of proliferative diabetic retinopathy, proliferative
vitreoretinopathy and macular pucker.
Ophthalmologica.
1998;
212
410-414
MissingFormLabel
- 3
Atalla L R, Sevanian A, Rao N A.
Immunohistochemical localization of glutathione peroxidase in ocular tissue.
Curr Eye Res.
1988;
7
1023-1027
MissingFormLabel
- 4
Augustin A J, Spitznas M, Koch F. et al .
Effects of artificial blood substitutes and vitamin E on ischemia induced retinal
oxidative tissue damage.
Exp Eye Res.
1998;
66
19-24
MissingFormLabel
- 5
Augustin A J, Dick H B, Offermann I. et al .
Bedeutung oxidativer Mechanismen bei Erkrankungen der Netzhaut.
Klin Monatsbl Augenheilkd.
2002;
219
631-643
MissingFormLabel
- 6
Battin E E, Brumaghim J L.
Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging,
glutathione peroxidase, and metal-binding antioxidant mechanisms.
Cell Biochem Biophys.
2009;
55
1-23
MissingFormLabel
- 7
Baur A, Harrer T, Peukert M. et al .
Alpha-lipoic acid is an effective inhibitor of human immuno-deficiency virus (HIV-1)
replication.
Klin Wochnschr.
1991;
69
722-724
MissingFormLabel
- 8
Baynes J W.
Role of oxidative stress in development of complications in diabetes.
Diabetes.
1991;
40
405-412
MissingFormLabel
- 9
Boulton M, Rozanowska M, Rozanowski B.
Retinal photodamage.
J Photochem Photobiol.
2001;
64
144-161
MissingFormLabel
- 10
Brauchle M, Funk J O, Kind P. et al .
Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured
keratinocytes.
J Biol Chem.
1996;
271
21793-21797
MissingFormLabel
- 11
Brownlee M, Leramie A.
The biochemistry of the complications of diabetes mellitus.
Ann Rev Biochem.
1981;
50
385-432
MissingFormLabel
- 12
Brownlee M, Ceramie A, Vlassara H.
Advanced glycosylation endproducts in tissue and the biochemical basis of diabetic
complications.
N Engl J Med.
1988;
318
1315-1321
MissingFormLabel
- 13
Cheeseman K H, Slater T F.
An introduction to free radical biochemistry.
Br Med Bull.
1993;
49
481-93
MissingFormLabel
- 14
Costagliola C, Menzione M.
Effect of vitamin E on the oxidative state of glutathione in plasma.
Clin Physiol Biochem.
1990;
8
140-143
MissingFormLabel
- 15
De La Paz M A, Anderson R E.
Lipid peroxidation in rod outer segments.
Invest Ophth Vis Sci.
1992a;
33
2091-2096
MissingFormLabel
- 16
De La Paz M A, Anderson R E.
Region and age dependent variation in susceptibility of the human retina to lipid
peroxidation.
Invest Ophth Vis Sci.
1992b;
33
3497-3499
MissingFormLabel
- 17 Elstner E F. Der Sauerstoff. Biochemie, Biologie, Medizin. BI-Wissenschaftsverlag 1990
MissingFormLabel
- 18
Evans J R.
Risk factors for age-related macular degeneration.
Progress Ret and Eye Res.
2001;
20
227-253
MissingFormLabel
- 19
FASEB Meeting Report. Anti-oxidants may reduce retinopathy risk for diabetes.
Cataract & Refractive Surgery Euro Times.
1998;
May–June
29
MissingFormLabel
- 20
Forte A, Finicelli M, Grossi M. et al .
DNA damage and repair in a model of rat vascular injury.
Clin Sci.
2009;
Oct 5
Epub ahead of print
MissingFormLabel
- 21
Grootveld M, Halliwell B, Moorhouse C P.
Action of uric acid, allopurinol and oxypurinol on the myeloperoxidase-derived oxidant
hypochlorous acid.
Free Rad Res Comms.
1987;
4
69-76
MissingFormLabel
- 22
Ham W T, Mueller H A, Ruffolo J J. et al .
Basic mechanisms underlying the production of photochemical lesions in the mammalian
retina.
Curr Eye Res.
1984;
3
165-174
MissingFormLabel
- 23
Hammond B R, Wooten B R, Snodderly D M.
Density of the human crystalline lens is related to the macular pigment carotenoids,
lutein and zeaxanthin.
Optom Vis Sci.
1997;
74
499-504
MissingFormLabel
- 24
Handa J T, Reiser K M, Matsunaga H. et al .
The advanced glycation endproduct pentosidine induces the expression of PDGF-B in
human retinal pigment epithelial cells.
Exp Eye Res.
1998;
66
411-419
MissingFormLabel
- 25
Hiramatsu K, Arimori S.
Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia
and diabetes.
Diabetes.
1988;
37
832-837
MissingFormLabel
- 26
Hirata C, Nakano K, Nakamura N.
Advanced glycation end products induce expression of vascular endothelial growth factor
by retinal Muller cells.
Biochem Biophys Res Commun.
1997;
236
712-715
MissingFormLabel
- 27
Jain S K.
Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human
and red blood cells.
J Biol Chem.
1989;
264
21340-21345
MissingFormLabel
- 28
Janisch K M, Milde J, Schempp H. et al .
Vitamin C, vitamin E and flavonoids.
Dev Ophthalmol.
2005;
38
59-69
MissingFormLabel
- 29
Jennings P E, Barnett A H.
New approaches to the pathogenesis and treatment of diabetic microangiopathy.
Diabet Med.
1988;
5
111-117
MissingFormLabel
- 30
Karpen C W, Pritchard K A, Arnold J H.
Restoration of prostacyclin/thromboxane A balance in the diabetic rat. Influence of
dietary vitamin E.
Diabetes.
1982;
31
947-951
MissingFormLabel
- 31
Karpen C W, Cataland S, D’Dorisio T M. et al .
Production of 12-HETE and vitamin E status in patients of type I human diabetic subjects.
Diabetes.
1985;
34
526-531
MissingFormLabel
- 32
Kaul K, Lamm K W, Fong T. et al .
Ascorbate peroxidase in bovine retinal pigment epithelium and choroid.
Curr Eye Res.
1988;
7
675-679
MissingFormLabel
- 33
Kitahara L, Eyre H J, Lynch R. et al .
Metabolic activity of diabetic monocytes.
Diabetes.
1980;
29
251-256
MissingFormLabel
- 34
Kuijk F JGM, Buck van P.
Fatty acid composition of the human macula and peripheral retina.
Invest Ophth Vis Sci.
1992;
33
3493-3496
MissingFormLabel
- 35
Kuroki M, Voest E E, Amano S. et al .
Reactive oxygen intermediates increase vascular endothelial growth factor expression
in vitro and in vivo.
J Clin Invest.
1996;
98
1667-1675
MissingFormLabel
- 36
Liles M R, Newsome D A, Oliver P D.
Antioxidant enzymes in the aging human retinal pigment epithelium.
Arch Ophthalmol.
1991;
109
1285-1288
MissingFormLabel
- 37
Loscalzo J, Voetsch B, Liao R. et al .
Genetic determinants of vascular oxidant stress and endothelial dysfunction.
Congest Heart Fail.
2005;
11
73-79
MissingFormLabel
- 38
Lynch M A.
Lipoic acid confers protection against oxidative injury in non-neuronal and neuronal
tissue.
Nutritional Neuroscience.
2001;
4
4419-438
MissingFormLabel
- 39
Lyons T J.
Oxidised low density lipoproteins: a role in the pathogenesis of atherosclerosis in
diabetes.
Diabet Med.
1991;
8
411-419
MissingFormLabel
- 40
Maritim A C, Sanders R A, Watkins 3rd
J B.
Diabetes, oxidative stress, and antioxidants: a review.
J Biochem Mol Toxicol.
2003;
17
24-38
MissingFormLabel
- 41
Mayer-Davis E J, Bell R A, Reboussin B A. et al .
Antioxidant nutrient intake and diabetic retinopathy. The San Luis Valley diabetes
study.
Ophthalmology.
1998;
105
2264-2270
MissingFormLabel
- 42
Michelson I C.
The mode of development of the vascular system of the retina, with some observations
on its significance for certain retinal disease.
Trans Ophthalmol Soc UK.
1948;
68
137-180
MissingFormLabel
- 43
Noell W K, Albrecht R.
Irreversible effects of visible light on the retina: Role of vitamin A.
Science.
1971;
172
76-80
MissingFormLabel
- 44
Noell W K.
Possible mechanisms of photoreceptor damage by light in mammalian eyes.
Vision Res.
1980;
20
1163-1171
MissingFormLabel
- 45
Organisciak D T, Wang H M, Kou A l.
Ascorbate and glutathione levels in the developing normal and dystrophic rat retina:
effect of intense light exposure.
Curr Eye Res.
1984;
3
257-267
MissingFormLabel
- 46
Packer L, Tritschler H J, Wessel K.
Neuroprotection by the metabolic antioxidant α-lipoic acid.
Free Radical Biology & Medicine.
1997;
22
359-378
MissingFormLabel
- 47 Packer L, Colman C. The Antioxidant Miracle,. John Wiley and Sons New York; 1999
MissingFormLabel
- 48
Perez-Gracia E, Blanco R, Carmona M. et al .
Oxidative stress damage and oxidative stress responses in the choroid plexus in Alzheimer’s
disease.
Acta Neuropathol.
2009;
118
497-504
MissingFormLabel
- 49
Persad S, Menon I A, Basu P K. et al .
Phototoxicity of chlorpromazine on retinal pigment epithelial cells.
Curr Eye Res.
1988;
7
1-9
MissingFormLabel
- 50
Rao N A, Thaete L G, Delmage J M. et al .
Superoxide dismutase in ocular structures.
Invest Ophth Vis Sci.
1985;
26
1778-1781
MissingFormLabel
- 51
Rösen P, Oestreich R, Tschöpe D.
Vitamin and diabetes.
Fat Science and Technology.
1991;
93
425-431
MissingFormLabel
- 52
Rolfsen M L, Davis W R.
Cerebral function during cardiac arrest.
Crit Care Med.
1989;
17
183-292
MissingFormLabel
- 53
Ruef J, Hu Z Y, Yin L Y. et al .
Induction of vascular endothelial growth factor in balloon injured baboon arteries.
A novel role for reactive oxygen species in atherosclerosis.
Circ Res.
1997;
81
24-33
MissingFormLabel
- 54
Schroder S, Palinski W, Schmid-Schonbein G W.
Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization
in diabetic retinopathy.
Am J Pathol.
1991;
139
81-100
MissingFormLabel
- 55
Shaban H, Richter C.
A2E and blue light in the retina: The paradigm of age-related macular degeneration.
Biol Chem.
2002;
383
537-545
MissingFormLabel
- 56
56 S hvedova AA, Alekseeva O M, Kuliev L Y. et al .
Damage of photoreceptor membrane lipids and proteins induced by photosensitized generation
of singlet oxygen.
Curr Eye Res.
1982;
2
683-689
MissingFormLabel
- 57
Stephens R J, Negi D S, Short S M. et al .
Vitamin E distribution in ocular tissues following longterm dietary depletion and
supplementation as determined by microdissection and gas chromatography mass spectrometry.
Exp Eye Res.
1988;
47
237-245
MissingFormLabel
- 58
Szaflik J P, Janik-Papis K, Synowiec E. et al .
DNA damage and repair in age-related macular degeneration.
Mutat Res.
2009;
669
169-176
MissingFormLabel
- 59
Tolentino M J, Miller J W, Gragoudas E S. et al .
Intravitreous injections of vascular endothelial growth factor produce retinal ischemia
and microangiopathy in an adult primate.
Ophthalmology.
1996;
103
1820-1828
MissingFormLabel
- 60
Tso M OM, Woodford B J, Lamm K W.
Distribution of ascorbate in normal primate retina and after photic injury: a biochemical,
morphological correlated study.
Curr Eye Res.
1984;
3
181-191
MissingFormLabel
- 61
Uzel N, Sivas A, Uysal M. et al .
Erythrocyte lipid peroxidation and glutathione peroxidase activities in patients with
diabetes mellitus.
Horm Metab Res.
1987;
19
89-90
MissingFormLabel
- 62
Wasil M, Halliwell B, Moorhouse C P.
Scavenging of hypochlorous acid by tetracycline, rifampicin and some other antibiotics:
a possible antioxidant action of rifampicin and tetracycline?.
Biochem Pharmacol.
1988;
37
775-778
MissingFormLabel
- 63
Wiegand R D, Giusto N M, Rapp L M. et al .
Evidence for rod outer segment lipid peroxidation following constant illumination
of the rat retina.
Invest Ophth Vis Sci.
1983;
24
1433-1435
MissingFormLabel
- 64
Wright P S, Loudy D E, Cross Doersen D E. et al .
Quantitation of vascular endothelial growth factor mRNA levels in human breast tumors
and metastatic lymph nodes.
Exp Mol Pathol.
1997;
64
41-51
MissingFormLabel
- 65
Yamashita H, Horie K, Yamamoto T. et al .
Light induced retinal damage in mice.
Retina.
1992;
12
59-66
MissingFormLabel
- 66
Young R W.
Pathophysiology of age related macular degeneration.
Surv Ophthalmol.
1987;
31
291-306
MissingFormLabel
- 67
Young R W.
Solar radiation and age related macular degeneration.
Surv Ophthalmol.
1988;
32
252-269
MissingFormLabel
Prof. Dr. Albert J. Augustin
Augenklinik, Klinikum Karlsruhe
Moltkestraße 90
76133 Karlsruhe
Phone: ++ 49/7 21/9 74 20 01
Fax: ++ 49/7 21/9 74 20 09
Email: albertjaugustin@googlemail.com