Subscribe to RSS
DOI: 10.1055/s-0029-1245125
© Georg Thieme Verlag KG Stuttgart · New York
Was ist oxidativer Stress?
Oxidative Tissue DamagePublication History
Eingegangen: 3.11.2009
Angenommen: 25.12.2009
Publication Date:
12 February 2010 (online)
Zusammenfassung
Oxidativer Stress im chemischen Sinne beschreibt den Zustand der oxidativen Überflutung. Heute wird häufig als oxidativer Stress auch jeder Zustand bezeichnet, der mit einer Erhöhung an Oxidantien oder auch einem Mangel an Antioxidantien sowohl im Gesamtorganismus als auch in einem Organkompartiment einhergeht. Vom molekularen Sauerstoff ausgehend werden in entsprechender Umgebung hochreaktive Metabolite generiert, die entweder direkt schädigend wirken oder die Bildung von Sekundärreaktionen ermöglichen, die schließlich zu oxidativen Prozessen führen. Die Zelle hat zahlreiche Mechanismen und Strategien entwickelt, die potenziell toxische Sauerstoffspezies auf verschiedenen Stufen ihrer Entstehung oder ihrer Reaktion mit Biomolekülen hemmen oder blockieren sollen. Zahlreiche Krankheitsbilder werden mit oxidativem Stress in Verbindung gebracht. Das Auge ist im Vergleich zu anderen Organen insofern vermehrt gefährdet, oxidative Schäden zu erleiden, da es permanent mit oxidativen Stimuli umgehen muss. Die biochemische Zusammensetzung der okulären Strukturen ist ein weiterer Faktor, der diese im Vergleich zu anderen Organen vermehrte oxidative Gefährdung ausmacht. Insbesondere die okuläre bzw. die Netzhautischämie, die diabetische Retinopathie sowie die altersbedingte Makuladegeneration und auch das Glaukom werden mit oxidativen Prozessen in Verbindung gebracht. Während bei der Netzhautischämie die klassischen Generierungsmechanismen von Oxidantien von Relevanz sind, gelten diese bei der diabetischen Retinopathie im Hinblick auf die Generierung oxidativer Metabolite mittlerweile eher als Sekundärreaktionen. Hier stehen heute Glykosylierungsprodukte (AGE’s) und die auch oxidativ induzierbare Expression von Wachstumsfaktoren im Mittelpunkt. Bei der altersbedingten Makuladegeneration scheinen photodynamische Prozesse (v. a. Typ-2-Reaktion), die von Kindheit an ablaufen und auch durch sichtbares, v. a. blaues Licht unterhalten werden, mitverantwortlich für die Entstehung des Krankheitsbilds zu sein. Zusätzlich kann die Induktion des Gefäßwachstums bzw. die Expression von Wachstumsfaktoren über Entzündungsreaktionen aber auch oxidativ erfolgen.
Abstract
Oxidative stress is defined as an overflow of oxidative metabolites either in the human body or in a compartment of the body. Today this chemical definition has been slightly modified and encompasses an elevation of oxidative metabolites or a relative deficiency of anti-oxidants. Molecular oxygen is the basis of many highly reactive oxidative species which are able to directly damage or lead to the generation of secondary reactions which then initiate oxidative processes. The cell has established numerous mechanisms and strategies to antagonise those oxidative processes at different steps. Many diseases have been shown to be either related to or even be initiated by oxidative processes. The eye is at high risk to be damaged by oxidative mechanisms. One major reason is its permanent exposition to oxidative stimuli. The biochemical composition of ocular structures, especially that of the retina (unsaturated fatty acids), is an important factor making the eye more susceptible as compared to other organs. Ocular ischaemia, ischaemia or hypoxia of the retina, diabetic retinopathy and glaucoma are important disease entities that are initiated or propagated by oxidative processes. Ischaemic processes lead to classical reactions of the oxidative pathway. This is no longer believed to be the case in diabetic retinopathy. Here, advanced glycation end products (AGE’s) and related species are able to induce oxidative reactions and the expression of growth factors. In age-related macular degeneration, photodynamic processes that already occur in childhood are believed to be a major factor contributing to the pathogenesis of the disease process. In addition, the expression of growth factors and new vessel growth can be initiated via inflammatory reactions or oxidative metabolites.
Schlüsselwörter
oxidativer Gewebeschaden - Sauerstoff - Antioxidantien - Diabetes mellitus - altersbedingte Makuladegeneration
Key words
oxidative tissue damage - oxygen - anti-oxidants - diabetes - age-related macular degeneration
Literatur
- 1 Albano E, Vidali M. Immune mechanisms in alcoholic liver disease. Genes Nutr. 2009; Oct 7 Epub ahead of print
- 2 Armstrong D, Augustin A J, Spengler R. et al . Detection of vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF α) in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker. Ophthalmologica. 1998; 212 410-414
- 3 Atalla L R, Sevanian A, Rao N A. Immunohistochemical localization of glutathione peroxidase in ocular tissue. Curr Eye Res. 1988; 7 1023-1027
- 4 Augustin A J, Spitznas M, Koch F. et al . Effects of artificial blood substitutes and vitamin E on ischemia induced retinal oxidative tissue damage. Exp Eye Res. 1998; 66 19-24
- 5 Augustin A J, Dick H B, Offermann I. et al . Bedeutung oxidativer Mechanismen bei Erkrankungen der Netzhaut. Klin Monatsbl Augenheilkd. 2002; 219 631-643
- 6 Battin E E, Brumaghim J L. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009; 55 1-23
- 7 Baur A, Harrer T, Peukert M. et al . Alpha-lipoic acid is an effective inhibitor of human immuno-deficiency virus (HIV-1) replication. Klin Wochnschr. 1991; 69 722-724
- 8 Baynes J W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991; 40 405-412
- 9 Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage. J Photochem Photobiol. 2001; 64 144-161
- 10 Brauchle M, Funk J O, Kind P. et al . Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem. 1996; 271 21793-21797
- 11 Brownlee M, Leramie A. The biochemistry of the complications of diabetes mellitus. Ann Rev Biochem. 1981; 50 385-432
- 12 Brownlee M, Ceramie A, Vlassara H. Advanced glycosylation endproducts in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988; 318 1315-1321
- 13 Cheeseman K H, Slater T F. An introduction to free radical biochemistry. Br Med Bull. 1993; 49 481-93
- 14 Costagliola C, Menzione M. Effect of vitamin E on the oxidative state of glutathione in plasma. Clin Physiol Biochem. 1990; 8 140-143
- 15 De La Paz M A, Anderson R E. Lipid peroxidation in rod outer segments. Invest Ophth Vis Sci. 1992a; 33 2091-2096
- 16 De La Paz M A, Anderson R E. Region and age dependent variation in susceptibility of the human retina to lipid peroxidation. Invest Ophth Vis Sci. 1992b; 33 3497-3499
- 17 Elstner E F. Der Sauerstoff. Biochemie, Biologie, Medizin. BI-Wissenschaftsverlag 1990
- 18 Evans J R. Risk factors for age-related macular degeneration. Progress Ret and Eye Res. 2001; 20 227-253
- 19 FASEB Meeting Report. Anti-oxidants may reduce retinopathy risk for diabetes. Cataract & Refractive Surgery Euro Times. 1998; May–June 29
- 20 Forte A, Finicelli M, Grossi M. et al . DNA damage and repair in a model of rat vascular injury. Clin Sci. 2009; Oct 5 Epub ahead of print
- 21 Grootveld M, Halliwell B, Moorhouse C P. Action of uric acid, allopurinol and oxypurinol on the myeloperoxidase-derived oxidant hypochlorous acid. Free Rad Res Comms. 1987; 4 69-76
- 22 Ham W T, Mueller H A, Ruffolo J J. et al . Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res. 1984; 3 165-174
- 23 Hammond B R, Wooten B R, Snodderly D M. Density of the human crystalline lens is related to the macular pigment carotenoids, lutein and zeaxanthin. Optom Vis Sci. 1997; 74 499-504
- 24 Handa J T, Reiser K M, Matsunaga H. et al . The advanced glycation endproduct pentosidine induces the expression of PDGF-B in human retinal pigment epithelial cells. Exp Eye Res. 1998; 66 411-419
- 25 Hiramatsu K, Arimori S. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes. 1988; 37 832-837
- 26 Hirata C, Nakano K, Nakamura N. Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells. Biochem Biophys Res Commun. 1997; 236 712-715
- 27 Jain S K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human and red blood cells. J Biol Chem. 1989; 264 21340-21345
- 28 Janisch K M, Milde J, Schempp H. et al . Vitamin C, vitamin E and flavonoids. Dev Ophthalmol. 2005; 38 59-69
- 29 Jennings P E, Barnett A H. New approaches to the pathogenesis and treatment of diabetic microangiopathy. Diabet Med. 1988; 5 111-117
- 30 Karpen C W, Pritchard K A, Arnold J H. Restoration of prostacyclin/thromboxane A balance in the diabetic rat. Influence of dietary vitamin E. Diabetes. 1982; 31 947-951
- 31 Karpen C W, Cataland S, D’Dorisio T M. et al . Production of 12-HETE and vitamin E status in patients of type I human diabetic subjects. Diabetes. 1985; 34 526-531
- 32 Kaul K, Lamm K W, Fong T. et al . Ascorbate peroxidase in bovine retinal pigment epithelium and choroid. Curr Eye Res. 1988; 7 675-679
- 33 Kitahara L, Eyre H J, Lynch R. et al . Metabolic activity of diabetic monocytes. Diabetes. 1980; 29 251-256
- 34 Kuijk F JGM, Buck van P. Fatty acid composition of the human macula and peripheral retina. Invest Ophth Vis Sci. 1992; 33 3493-3496
- 35 Kuroki M, Voest E E, Amano S. et al . Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest. 1996; 98 1667-1675
- 36 Liles M R, Newsome D A, Oliver P D. Antioxidant enzymes in the aging human retinal pigment epithelium. Arch Ophthalmol. 1991; 109 1285-1288
- 37 Loscalzo J, Voetsch B, Liao R. et al . Genetic determinants of vascular oxidant stress and endothelial dysfunction. Congest Heart Fail. 2005; 11 73-79
- 38 Lynch M A. Lipoic acid confers protection against oxidative injury in non-neuronal and neuronal tissue. Nutritional Neuroscience. 2001; 4 4419-438
- 39 Lyons T J. Oxidised low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes. Diabet Med. 1991; 8 411-419
- 40 Maritim A C, Sanders R A, Watkins 3rd J B. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003; 17 24-38
- 41 Mayer-Davis E J, Bell R A, Reboussin B A. et al . Antioxidant nutrient intake and diabetic retinopathy. The San Luis Valley diabetes study. Ophthalmology. 1998; 105 2264-2270
- 42 Michelson I C. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal disease. Trans Ophthalmol Soc UK. 1948; 68 137-180
- 43 Noell W K, Albrecht R. Irreversible effects of visible light on the retina: Role of vitamin A. Science. 1971; 172 76-80
- 44 Noell W K. Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res. 1980; 20 1163-1171
- 45 Organisciak D T, Wang H M, Kou A l. Ascorbate and glutathione levels in the developing normal and dystrophic rat retina: effect of intense light exposure. Curr Eye Res. 1984; 3 257-267
- 46 Packer L, Tritschler H J, Wessel K. Neuroprotection by the metabolic antioxidant α-lipoic acid. Free Radical Biology & Medicine. 1997; 22 359-378
- 47 Packer L, Colman C. The Antioxidant Miracle,. John Wiley and Sons New York; 1999
- 48 Perez-Gracia E, Blanco R, Carmona M. et al . Oxidative stress damage and oxidative stress responses in the choroid plexus in Alzheimer’s disease. Acta Neuropathol. 2009; 118 497-504
- 49 Persad S, Menon I A, Basu P K. et al . Phototoxicity of chlorpromazine on retinal pigment epithelial cells. Curr Eye Res. 1988; 7 1-9
- 50 Rao N A, Thaete L G, Delmage J M. et al . Superoxide dismutase in ocular structures. Invest Ophth Vis Sci. 1985; 26 1778-1781
- 51 Rösen P, Oestreich R, Tschöpe D. Vitamin and diabetes. Fat Science and Technology. 1991; 93 425-431
- 52 Rolfsen M L, Davis W R. Cerebral function during cardiac arrest. Crit Care Med. 1989; 17 183-292
- 53 Ruef J, Hu Z Y, Yin L Y. et al . Induction of vascular endothelial growth factor in balloon injured baboon arteries. A novel role for reactive oxygen species in atherosclerosis. Circ Res. 1997; 81 24-33
- 54 Schroder S, Palinski W, Schmid-Schonbein G W. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol. 1991; 139 81-100
- 55 Shaban H, Richter C. A2E and blue light in the retina: The paradigm of age-related macular degeneration. Biol Chem. 2002; 383 537-545
- 56 56 S hvedova AA, Alekseeva O M, Kuliev L Y. et al . Damage of photoreceptor membrane lipids and proteins induced by photosensitized generation of singlet oxygen. Curr Eye Res. 1982; 2 683-689
- 57 Stephens R J, Negi D S, Short S M. et al . Vitamin E distribution in ocular tissues following longterm dietary depletion and supplementation as determined by microdissection and gas chromatography mass spectrometry. Exp Eye Res. 1988; 47 237-245
- 58 Szaflik J P, Janik-Papis K, Synowiec E. et al . DNA damage and repair in age-related macular degeneration. Mutat Res. 2009; 669 169-176
- 59 Tolentino M J, Miller J W, Gragoudas E S. et al . Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology. 1996; 103 1820-1828
- 60 Tso M OM, Woodford B J, Lamm K W. Distribution of ascorbate in normal primate retina and after photic injury: a biochemical, morphological correlated study. Curr Eye Res. 1984; 3 181-191
- 61 Uzel N, Sivas A, Uysal M. et al . Erythrocyte lipid peroxidation and glutathione peroxidase activities in patients with diabetes mellitus. Horm Metab Res. 1987; 19 89-90
- 62 Wasil M, Halliwell B, Moorhouse C P. Scavenging of hypochlorous acid by tetracycline, rifampicin and some other antibiotics: a possible antioxidant action of rifampicin and tetracycline?. Biochem Pharmacol. 1988; 37 775-778
- 63 Wiegand R D, Giusto N M, Rapp L M. et al . Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest Ophth Vis Sci. 1983; 24 1433-1435
- 64 Wright P S, Loudy D E, Cross Doersen D E. et al . Quantitation of vascular endothelial growth factor mRNA levels in human breast tumors and metastatic lymph nodes. Exp Mol Pathol. 1997; 64 41-51
- 65 Yamashita H, Horie K, Yamamoto T. et al . Light induced retinal damage in mice. Retina. 1992; 12 59-66
- 66 Young R W. Pathophysiology of age related macular degeneration. Surv Ophthalmol. 1987; 31 291-306
- 67 Young R W. Solar radiation and age related macular degeneration. Surv Ophthalmol. 1988; 32 252-269
Prof. Dr. Albert J. Augustin
Augenklinik, Klinikum Karlsruhe
Moltkestraße 90
76133 Karlsruhe
Phone: ++ 49/7 21/9 74 20 01
Fax: ++ 49/7 21/9 74 20 09
Email: albertjaugustin@googlemail.com