RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245171
© Georg Thieme Verlag KG Stuttgart · New York
Oxidativer Stress im Trabekelwerk beim POWG
Oxidative Stress in the Trabecular Meshwork of POAGPublikationsverlauf
Eingegangen: 15.1.2010
Angenommen: 25.1.2010
Publikationsdatum:
12. Februar 2010 (online)

Zusammenfassung
Das primäre Offenwinkelglaukom (POWG) wird als eine Optikusneuropathie definiert, bei der es zu einem Verlust von Axonen des Nervus opticus und der dazugehörigen Ganglienzellen kommt. Die Ursache dieser Schädigung ist bis heute nicht geklärt. In der Pathogenese und Progression des POWG werden verschiedene Faktoren wie ein erhöhter intraokulärer Druck und eine verminderte okuläre Durchblutung verantwortlich gemacht. Aus morphologischen Untersuchungen ist bekannt, dass die Druckerhöhung beim POWG auf einer Erhöhung des Abflusswiderstandes im Bereich des Trabekelwerkes beruht. Das Trabekelwerk (TW) des POWG-Patienten zeichnet sich unter anderem durch folgende spezifische morphologische und biochemische Veränderungen aus: Akkumulation von extrazellulärer Matrix, beschleunigte Alterung, Apoptose, subklinische chronische Entzündungen und Veränderungen im Zytoskelett. Die Ursache und die Vorgänge, die zu diesen Veränderungen führen, sind bis heute nicht geklärt. In der Pathogenese des POWG wird zunehmend oxidativer Stress diskutiert. Wissenschaftliche Untersuchungen deuten darauf hin, dass im TW von POWG-Patienten ein vermehrter oxidativer Stress vorliegt. Die Behandlung von kultivierten TW-Zellen führt zu den genannten glaukomtypischen Veränderungen. Durch die Vorbehandlung mit Antioxidantien aber auch mit Wirkstoffen von modernen Antiglaukomatosa können diese glaukomtypischen Veränderungen in TW reduziert werden. Zusammenfassend können in vitro POWG-typische Veränderungen im TW durch oxidativen Stress induziert werden. Somit könnte eine Reduktion des oxidativen Stresses im TW ein wirkungsvoller Ansatz sein, die Progression des POWG zu reduzieren.
Abstract
Primary open angle glaucoma (POAG) is defined as an optic neuropathy which is characterised by the loss of optic nerve axons and the related retinal ganglion cells. The reason for these changes is still unknown. In the pathogenesis of POAG several factors like increased intraocular pressure and a reduction of ocular blood supply are discussed. Morphological and biochemical analyses of the trabecular meshwork (TM) of POAG patients revealed loss of cells, increased accumulation of extracellular matrix (ECM), changes in the cytoskeleton, cellular senescence and the process of subclinical inflammation. One factor becoming more likely to be involved in the pathogenesis of POAG is oxidative stress. Treatment of TM cells with oxidative stress induced POAG-typical changes like ECM accumulation, cell death, disarrangement of the cytoskeleton, advanced senescence and the release of inflammatory markers. By pretreatment with antioxidants, prostaglandin analogues, beta-blockers or local carbonic anhydrase inhibitors, these effects were markedly reduced. In conclusion, oxidative stress is able to induce characteristic glaucomatous TM changes in vitro and these oxidative stress-induced TM changes can be minimised by the use of antioxidants and IOP-lowering substances. It is tempting to speculate that prevention of oxidative stress exposure to the TM may help to reduce the progression of POAG.
Schlüsselwörter
Glaukom - oxidativer Stress - Trabekelwerk
Key words
glaucoma - oxidative stress - trabecular meshwork
Literatur
- 1
Berisha F, Schmetterer K, Vass C. et al .
Effect of trabeculectomy on ocular blood flow.
Br J Ophthalmol.
2005;
89
185-188
MissingFormLabel
- 2
Grieshaber M C, Flammer J.
Blood flow in glaucoma.
Curr Opin Ophthalmol.
2005;
16
79-83
MissingFormLabel
- 3
Harju M, Vesti E.
Blood flow of the optic nerve head and peripapillary retina in exfoliation syndrome
with unilateral glaucoma or ocular hypertension.
Graefes Arch Clin Exp Ophthalmol.
2001;
239
271-277
MissingFormLabel
- 4
Liton P B, Challa P, Stinnett S. et al .
Cellular senescence in the glaucomatous outflow pathway.
Exp Gerontol.
2005;
40
745-748
MissingFormLabel
- 5
Lutjen-Drecoll E.
Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis
of the disease.
Exp Eye Res.
2005;
81
1-4
MissingFormLabel
- 6
Sacca S C, Bolognesi C, Battistella A. et al .
Gene-environment interactions in ocular diseases.
Mutat Res.
2009;
667
98-117
MissingFormLabel
- 7
Klein B E, Klein R, Linton K L.
Intraocular pressure in an American community. The Beaver Dam Eye Study.
Invest Ophthalmol Vis Sci.
1992;
33
2224-2228
MissingFormLabel
- 8
Leske M C, Connell A M, Wu S Y. et al .
Distribution of intraocular pressure. The Barbados Eye Study.
Arch Ophthalmol.
1997;
115
1051-1057
MissingFormLabel
- 9
Tielsch J M, Sommer A, Katz J. et al .
Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore
Eye Survey.
JAMA.
1991;
266
369-374
MissingFormLabel
- 10
Weih L M, Mukesh B N, McCarty C A. et al .
Association of demographic, familial, medical, and ocular factors with intraocular
pressure.
Arch Ophthalmol.
2001;
119
875-880
MissingFormLabel
- 11
Wu S Y, Leske M C.
Associations with intraocular pressure in the Barbados Eye Study.
Arch Ophthalmol.
1997;
115
1572-1576
MissingFormLabel
- 12
Harman D.
Aging: a theory based on free radical and radiation chemistry.
J Gerontol.
1956;
11
298-300
MissingFormLabel
- 13
Toussaint O, Medrano E E, Zglinicki von T.
Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of
human diploid fibroblasts and melanocytes.
Exp Gerontol.
2000;
35
927-945
MissingFormLabel
- 14
Hayflick L, Moorhead P S.
The serial cultivation of human diploid cell strains.
Exp Cell Res.
1961;
25
585-621
MissingFormLabel
- 15
Toussaint O, Remacle J, Dierick J F. et al .
From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature
senescence in human ageing.
Int J Biochem Cell Biol.
2002;
34
1415-1429
MissingFormLabel
- 16
Chen J, Goligorsky M S.
Premature senescence of endothelial cells: Methusaleh’s dilemma.
Am J Physiol Heart Circ Physiol.
2006;
290
H1729-1739
MissingFormLabel
- 17
Dumont P, Burton M, Chen Q M. et al .
Induction of replicative senescence biomarkers by sublethal oxidative stresses in
normal human fibroblast.
Free Radic Biol Med.
2000;
28
361-373
MissingFormLabel
- 18
Terman A, Brunk U T.
Oxidative stress, accumulation of biological „garbage”, and aging.
Antioxid Redox Signal.
2006;
8
197-204
MissingFormLabel
- 19
Ding G, Franki N, Kapasi A A. et al .
Tubular cell senescence and expression of TGF-beta1 and p21(WAF1 /CIP1) in tubulointerstitial
fibrosis of aging rats.
Exp Mol Pathol.
2001;
70
43-53
MissingFormLabel
- 20
Martin J A, Buckwalter J A.
The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting
cartilage repair.
J Bone Joint Surg Am.
2003;
85-A (Suppl 2)
106-110
MissingFormLabel
- 21
Wiemann S U, Satyanarayana A, Tsahuridu M. et al .
Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis.
FASEB J.
2002;
16
935-942
MissingFormLabel
- 22
Feher J, Kovacs I, Artico M. et al .
Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration.
Neurobiol Aging.
2006;
27
983-993
MissingFormLabel
- 23
Roth F, Bindewald A, Holz F G.
Keypathophysiologic pathways in age-related macular disease.
Graefes Arch Clin Exp Ophthalmol.
2004;
242
710-716
MissingFormLabel
- 24
Zarbin M A.
Current concepts in the pathogenesis of age-related macular degeneration.
Arch Ophthalmol.
2004;
122
598-614
MissingFormLabel
- 25
Tezel G, Luo C, Yang X.
Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation
end products in the human retina and optic nerve head.
Invest Ophthalmol Vis Sci.
2007;
48
1201-1211
MissingFormLabel
- 26
Wolfs R C, Klaver C C, Ramrattan R S. et al .
Genetic risk of primary open-angle glaucoma. Population-based familial aggregation
study.
Arch Ophthalmol.
1998;
116
1640-1645
MissingFormLabel
- 27
Fingert J H, Heon E, Liebmann J M. et al .
Analysis of myocilin mutations in 1703 glaucoma patients from five different populations.
Hum Mol Genet.
1999;
8
899-905
MissingFormLabel
- 28
Adam M F, Belmouden A, Binisti P. et al .
Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology
domain of TIGR in familial open-angle glaucoma.
Hum Mol Genet.
1997;
6
2091-2097
MissingFormLabel
- 29
O’Brien E T, Ren X, Wang Y.
Localization of myocilin to the golgi apparatus in Schlemm’s canal cells.
Invest Ophthalmol Vis Sci.
2000;
41
3842-3849
MissingFormLabel
- 30
Ueda J, Wentz-Hunter K K, Cheng E L. et al .
Ultrastructural localization of myocilin in human trabecular meshwork cells and tissues.
J Histochem Cytochem.
2000;
48
1321-1330
MissingFormLabel
- 31
Fingert J H, Stone E M, Sheffield V C. et al .
Myocilin glaucoma.
Surv Ophthalmol.
2002;
47
547-561
MissingFormLabel
- 32
Liu Y, Vollrath D.
Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma.
Hum Mol Genet.
2004;
13
1193-1204
MissingFormLabel
- 33
He Y, Leung K W, Zhuo Y H. et al .
Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork
cells.
Mol Vis.
2009;
15
815-825
MissingFormLabel
- 34
Izzotti A, Sacca S C, Cartiglia C. et al .
Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients.
Am J Med.
2003;
114
638-646
MissingFormLabel
- 35
Oz O, Aras Ates N, Tamer L. et al .
Glutathione S-transferase M 1, T 1, and P 1 gene polymorphism in exudative age-related
macular degeneration: a preliminary report.
Eur J Ophthalmol.
2006;
16
105-110
MissingFormLabel
- 36
Sekine Y, Hommura S, Harada S.
Frequency of glutathione-S-transferase 1 gene deletion and its possible correlation
with cataract formation.
Exp Eye Res.
1995;
60
159-163
MissingFormLabel
- 37
Hayes J D, Flanagan J U, Jowsey I R.
Glutathione transferases.
Annu Rev Pharmacol Toxicol.
2005;
45
51-88
MissingFormLabel
- 38
Galambos P, Vafiadis J, Vilchez S E. et al .
Compromised autoregulatory control of ocular hemodynamics in glaucoma patients after
postural change.
Ophthalmology.
2006;
113
1832-1836
MissingFormLabel
- 39
Haggendal E, Nilsson N J, Norback B.
Aspects of the autoregulation of cerebral blood flow.
Int Anesthesiol Clin.
1969;
7
353-367
MissingFormLabel
- 40
Harris A, Ciulla T A, Chung H S. et al .
Regulation of retinal and optic nerve blood flow.
Arch Ophthalmol.
1998;
116
1491-1495
MissingFormLabel
- 41
Ehrlich R, Kheradiya N S, Winston D M. et al .
Age-related ocular vascular changes.
Graefes Arch Clin Exp Ophthalmol.
2009;
247
583-591
MissingFormLabel
- 42
Moore D, Harris A, Wudunn D. et al .
Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?.
Clin Ophthalmol.
2008;
2
849-861
MissingFormLabel
- 43
Izzotti A, Bagnis A, Sacca S C.
The role of oxidative stress in glaucoma.
Mutat Res.
2006;
612
105-114
MissingFormLabel
- 44
Li C, Jackson R M.
Reactive species mechanisms of cellular hypoxia-reoxygenation injury.
Am J Physiol Cell Physiol.
2002;
282
C227-C241
MissingFormLabel
- 45
Proell V, Carmona-Cuenca I, Murillo M M. et al .
TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated
hepatic stellate cells to myofibroblastoid cells.
Comp Hepatol.
2007;
6
1
MissingFormLabel
- 46
Abu-Amero K K, Morales J, Bosley T M.
Mitochondrial abnormalities in patients with primary open-angle glaucoma.
Invest Ophthalmol Vis Sci.
2006;
47
2533-2541
MissingFormLabel
- 47
Sacca S C, Pascotto A, Camicione P. et al .
Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients
with primary open-angle glaucoma.
Arch Ophthalmol.
2005;
123
458-463
MissingFormLabel
- 48
Ferreira S M, Lerner S F, Brunzini R. et al .
Oxidative stress markers in aqueous humor of glaucoma patients.
Am J Ophthalmol.
2004;
137
62-69
MissingFormLabel
- 49
He Y, Leung K W, Zhang Y H. et al .
Mitochondrial complex I defect induces ROS release and degeneration in trabecular
meshwork cells of POAG patients: protection by antioxidants.
Invest Ophthalmol Vis Sci.
2008;
49
1447-1458
MissingFormLabel
- 50
Balansky R M, Izzotti A, D’Agostini F. et al .
Systemic genotoxic effects produced by light, and synergism with cigarette smoke in
the respiratory tract of hairless mice.
Carcinogenesis.
2003;
24
1525-1532
MissingFormLabel
- 51
Wei H, Ca Q, Rahn R. et al .
DNA structural integrity and base composition affect ultraviolet light-induced oxidative
DNA damage.
Biochemistry.
1998;
37
6485-6490
MissingFormLabel
- 52
Nakabayashi M.
Review of the ischemia hypothesis for ocular hypertension other than congenital glaucoma
and closed-angle glaucoma.
Ophthalmologica.
2004;
218
344-349
MissingFormLabel
- 53
Globus M Y, Busto R, Lin B. et al .
Detection of free radical activity during transient global ischemia and recirculation:
effects of intraischemic brain temperature modulation.
J Neurochem.
1995;
65
1250-1256
MissingFormLabel
- 54
Saugstad O D.
Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease.
Acta Paediatr.
1996;
85
1-4
MissingFormLabel
- 55
Matsuda S, Gomi F, Katayama T. et al .
Induction of connective tissue growth factor in retinal pigment epithelium cells by
oxidative stress.
Jpn J Ophthalmol.
2006;
50
229-234
MissingFormLabel
- 56
Zhang X, Li J, Sejas D P. et al .
Hypoxia-reoxygenation induces premature senescence in FA bone marrow hematopoietic
cells.
Blood.
2005;
106
75-85
MissingFormLabel
- 57
Azhar G, Liu L, Zhang X. et al .
Influence of age on hypoxia/reoxygenation-induced DNA fragmentation and bcl-2, bcl-xl,
bax and fas in the rat heart and brain.
Mech Ageing Dev.
1999;
112
5-25
MissingFormLabel
- 58
Ben-Yosef Y, Lahat N, Shapiro S. et al .
Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation.
Circ Res.
2002;
90
784-791
MissingFormLabel
- 59
Torii H, Kubota H, Ishihara H. et al .
Cilostazol inhibits the redistribution of the actin cytoskeleton and junctional proteins
on the blood-brain barrier under hypoxia/reoxygenation.
Pharmacol Res.
2007;
55
104-110
MissingFormLabel
- 60
Alge C S, Priglinger S G, Neubauer A S. et al .
Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin.
Invest Ophthalmol Vis Sci.
2002;
43
3575-3582
MissingFormLabel
- 61
Cumurcu T, Bulut Y, Demir H D. et al .
Aqueous humor erythropoietin levels in patients with primary open-angle glaucoma.
J Glaucoma.
2007;
16
645-648
MissingFormLabel
- 62
Noecker R.
Effects of common ophthalmic preservatives on ocular health.
Adv Ther.
2001;
18
205-215
MissingFormLabel
- 63
Debbasch C, Brignole F, Pisella P J. et al .
Quaternary ammoniums and other preservatives’ contribution in oxidative stress and
apoptosis on Chang conjunctival cells.
Invest Ophthalmol Vis Sci.
2001;
42
642-652
MissingFormLabel
- 64
Guenoun J M, Baudouin C, Rat P. et al .
In vitro study of inflammatory potential and toxicity profile of latanoprost, travoprost,
and bimatoprost in conjunctiva-derived epithelial cells.
Invest Ophthalmol Vis Sci.
2005;
46
2444-2450
MissingFormLabel
- 65
Temple M D, Perrone G G, Dawes I W.
Complex cellular responses to reactive oxygen species.
Trends Cell Biol.
2005;
15
319-326
MissingFormLabel
- 66
Fuchshofer R, Yu A L, Teng H H. et al .
Hypoxia/reoxygenation induces CTGF and PAI-1 in cultured human retinal pigment epithelium
cells.
Exp Eye Res.
2009;
88
889-899
MissingFormLabel
- 67
Madigan M C, Penfold P L, Provis J M. et al .
Intermediate filament expression in human retinal macroglia. Histopathologic changes
associated with age-related macular degeneration.
Retina.
1994;
14
65-74
MissingFormLabel
- 68
Rauhut D, Rohen J W.
Electron Microscopic study of the trabecular meshwork in alphachymotrypsin glaucoma.
Albrecht Von Graefes Arch Klin Exp Ophthalmol.
1972;
184
29-41
MissingFormLabel
- 69
Babizhayev M A, Brodskaya M W.
Fibronectin detection in drainage outflow system of human eyes in ageing and progression
of open-angle glaucoma.
Mech Ageing Dev.
1989;
47
145-157
MissingFormLabel
- 70 Trabecular extracellular matrix regulation. Acott TS Baltimore; Wiliams & Wilkins 1992: 125-157
MissingFormLabel
- 71
Welge-Lussen U, Eichhorn M, Bloemendal H. et al .
Classification of human scleral spur cells in monolayer culture.
Eur J Cell Biol.
1998;
75
78-84
MissingFormLabel
- 72
Yu A L, Fuchshofer R, Kampik A. et al .
Effects of oxidative stress in trabecular meshwork cells are reduced by prostaglandin
analogues.
Invest Ophthalmol Vis Sci.
2008;
49
4872-4880
MissingFormLabel
- 73
Liton P B, Gonzalez P, Epstein D L.
The role of proteolytic cellular systems in trabecular meshwork homeostasis.
Exp Eye Res.
2009;
88
724-728
MissingFormLabel
- 74
Alvarado J, Murphy C, Juster R.
Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous
normals.
Ophthalmology.
1984;
91
564-579
MissingFormLabel
- 75
Tan J C, Peters D M, Kaufman P L.
Recent developments in understanding the pathophysiology of elevated intraocular pressure.
Curr Opin Ophthalmol.
2006;
17
168-174
MissingFormLabel
- 76
Gardel M L, Shin J H, MacKintosh F C. et al .
Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
Phys Rev Lett.
2004;
93
188102
MissingFormLabel
- 77
Dalle-Donne I, Rossi R, Giustarini D. et al .
Actin carbonylation: from a simple marker of protein oxidation to relevant signs of
severe functional impairment.
Free Radic Biol Med.
2001;
31
1075-1083
MissingFormLabel
- 78
Zhu J, Zhou K, Hao J J. et al .
Regulation of cortactin/dynamin interaction by actin polymerization during the fission
of clathrin-coated pits.
J Cell Sci.
2005;
118
807-817
MissingFormLabel
- 79
Xu H, Chen M, Forrester J V.
Para-inflammation in the aging retina.
Prog Retin Eye Res.
2009;
28
348-368
MissingFormLabel
- 80
Li G, Luna C, Liton P B. et al .
Sustained stress response after oxidative stress in trabecular meshwork cells.
Mol Vis.
2007;
13
2282-2288
MissingFormLabel
- 81
Liton P B, Luna C, Challa P. et al .
Genome-wide expression profile of human trabecular meshwork cultured cells, nonglaucomatous
and primary open angle glaucoma tissue.
Mol Vis.
2006;
12
774-790
MissingFormLabel
- 82
Wang N, Chintala S K, Fini M E. et al .
Activation of a tissue-specific stress response in the aqueous outflow pathway of
the eye defines the glaucoma disease phenotype.
Nat Med.
2001;
7
304-309
MissingFormLabel
- 83
Caballero M, Liton P B, Epstein D L. et al .
Proteasome inhibition by chronic oxidative stress in human trabecular meshwork cells.
Biochem Biophys Res Commun.
2003;
308
346-352
MissingFormLabel
- 84
Costarides A P, Riley M V, Green K.
Roles of catalase and the glutathione redox cycle in the regulation of anterior-chamber
hydrogen peroxide.
Ophthalmic Res.
1991;
23
284-294
MissingFormLabel
- 85
Riley M V.
Physiologic neutralization mechanisms and the response of the corneal endothelium
to hydrogen peroxide.
CLAO J.
1990;
16
S16-21, discussion S 21 – S12
MissingFormLabel
- 86
Sacca S C, Izzotti A, Rossi P. et al .
Glaucomatous outflow pathway and oxidative stress.
Exp Eye Res.
2007;
84
389-399
MissingFormLabel
- 87
Chow C K, Ibrahim W, Wei Z. et al .
Vitamin E regulates mitochondrial hydrogen peroxide generation.
Free Radic Biol Med.
1999;
27
580-587
MissingFormLabel
- 88
Giblin F J, McCready J P, Kodama T. et al .
A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor.
Exp Eye Res.
1984;
38
87-93
MissingFormLabel
- 89
Ringvold A, Anderssen E, Kjonniksen I.
Distribution of ascorbate in the anterior bovine eye.
Invest Ophthalmol Vis Sci.
2000;
41
20-23
MissingFormLabel
- 90
Kang J H, Pasquale L R, Willett W. et al .
Antioxidant intake and primary open-angle glaucoma: a prospective study.
Am J Epidemiol.
2003;
158
337-346
MissingFormLabel
- 91
Varma S D.
Scientific basis for medical therapy of cataracts by antioxidants.
Am J Clin Nutr.
1991;
53
335S-345S
MissingFormLabel
- 92
Augustin W, Wiswedel I, Noack H. et al .
Role of endogenous and exogenous antioxidants in the defence against functional damage
and lipid peroxidation in rat liver mitochondria.
Mol Cell Biochem.
1997;
174
199-205
MissingFormLabel
- 93
Hamard P, Blondin C, Debbasch C. et al .
In vitro effects of preserved and unpreserved antiglaucoma drugs on apoptotic marker
expression by human trabecular cells.
Graefes Arch Clin Exp Ophthalmol.
2003;
241
1037-1043
MissingFormLabel
- 94
Kim E J, Kwon K J, Park J Y. et al .
Neuroprotective effects of prostaglandin E 2 or cAMP against microglial and neuronal
free radical mediated toxicity associated with inflammation.
J Neurosci Res.
2002;
70
97-107
MissingFormLabel
- 95
Towndrow K M, Jia Z, Lo H H. et al .
11-Deoxy,16,16-dimethyl prostaglandin E 2 induces specific proteins in association
with its ability to protect against oxidative stress.
Chem Res Toxicol.
2003;
16
312-319
MissingFormLabel
- 96
Towndrow K M, Mertens J J, Jeong J K. et al .
Stress- and growth-related gene expression are independent of chemical-induced prostaglandin
E(2) synthesis in renal epithelial cells.
Chem Res Toxicol.
2000;
13
111-117
MissingFormLabel
- 97
Thieme H, Schimmat C, Munzer G. et al .
Endothelin antagonism: effects of FP receptor agonists prostaglandin F 2alpha and
fluprostenol on trabecular meshwork contractility.
Invest Ophthalmol Vis Sci.
2006;
47
938-945
MissingFormLabel
- 98
Miyamoto N, Izumi H, Miyamoto R. et al .
Nipradilol and timolol induce Foxo3a and peroxiredoxin 2 expression and protect trabecular
meshwork cells from oxidative stress.
Invest Ophthalmol Vis Sci.
2009;
50
2777-2784
MissingFormLabel
- 99
Kinshuck D.
Glauline (metipranolol) induced uveitis and increase in intraocular pressure.
Br J Ophthalmol.
1991;
75
575
MissingFormLabel
- 100
Zanon-Moreno V, Garcia-Medina J J, Gallego-Pinazo R. et al .
Antioxidant status modifications by topical administration of dorzolamide in primary
open-angle glaucoma.
Eur J Ophthalmol.
2009;
19
565-571
MissingFormLabel
- 101
Coleman A L, Stone K L, Kodjebacheva G. et al .
Glaucoma risk and the consumption of fruits and vegetables among older women in the
study of osteoporotic fractures.
Am J Ophthalmol.
2008;
145
1081-1089
MissingFormLabel
- 102
Luna C, Li G, Liton P B. et al .
Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative
stress in trabecular meshwork cells.
Food Chem Toxicol.
2009;
47
198-204
MissingFormLabel
Prof. Dr. Ulrich Welge-Lüßen
Universität Erlangen-Nürnberg, Augenklinik
Schwabachanlage 6
91054 Erlangen
Telefon: ++ 49/91 31/8 54 47 31
Fax: ++ 49/91 31/8 53 46 30
eMail: ulrich.welge@uk-erlangen.de