Zusammenfassung
Auch wenn die Abklärung von Myopathien oft schwierig ist, sollte aus medizinischen
und finanziellen Gründen bei gegebenem Verdacht eine Abklärung durchgeführt werden.
Die Myopathiediagnostik basiert auf individueller Anamnese, Familienanamnese, Status,
blutchemischen Untersuchungen in Ruhe und unter Belastung, elektrophysiologischen
Untersuchungen, dem Muskel-MR, der Muskelbiopsie, dem Koffein-Halothan-Kontraktur-Test
sowie genetischen Untersuchungen. Muskelenzyme sind als Screening hilfreich, können
aber auch normal sein bzw. undulieren. Wiederholten symptomatischen Erhöhungen von
Muskelenzymen sollte nachgegangen werden. Bei metabolischen Myopathien können spezielle
Belastungstests die weitere Richtung für die Diagnostik vorgeben. Die Nadel-Elektromyografie
kann bei Myopathien normal sein oder myogene, neurogene oder unspezifische Befunde
zeigen. Mittels MR kann nicht nur die Verteilung betroffener Muskelgruppen erhoben
werden, sondern auch der Grad trophischer Störungen quantifiziert werden. Die Muskelbiopsie
wird hinsichtlich lichtmikroskopischer, elektronenmikroskopischer, biochemischer oder
genetischer Veränderungen ausgewertet. Nur bei begründetem Verdacht auf eine Mutation
in einem bestimmten Gen und Kenntnis des Vererbungsmodus sollte eine genetische Abklärung
versucht werden. Der Nachweis der pathogenen Mutation erlaubt eine effiziente genetische
Beratung, Prognoseerstellung und optimale Therapieplanung. Die Diagnose einer primären
Myopathie erfordert immer auch eine Untersuchung der Familienmitglieder. Die Abklärung
von Myopathien sollte wegen der diagnostischen, therapeutischen und prognostischen
Implikationen so rasch und gründlich wie möglich erfolgen.
Abstract
Although the diagnostic work-up for myopathies can be difficult, it should be carried
out for medical and financial reasons if the suspicion is supported by evidence. The
diagnosis is based on the history, neurological investigation, blood chemical investigations
at rest and under stress, electromyography, muscle MRI, biopsy, the in-vitro coffeine-halothan
contracture test, and molecular genetic studies. There is some role for muscle enzyme
determinations in the diagnostic work-up, although these values are frequently multifactorial.
However, if muscle enzymes are repeatedly increased without explanation but in the
presence of muscular symptoms, the diagnostic work-up should be initiated. Stress
tests can be of some additional help. Needle electromyography may be normal, myogenic,
neurogenic or non-specifically abnormal. Muscle MRI may show trophic disturbances,
and may guide one to the muscle most adequate for biopsy. A muscle biopsy may be taken
for a number of further investigations and may lead to the correct diagnosis. Only
if there is a profound suspicion for a certain genetic defect, molecular genetic investigations
should be initiated. In the case that a pathogenic mutation is found, genetic counselling,
and assessment of the prognosis, and therapy can be initiated. For diagnostic, therapeutic
and prognostic implications, diagnostic work-up should be carried out as soon as possible
if myopathy is suspected.
Schlüsselwörter
Muskelkrankheit - neuromuskuläre Erkrankung - peripheres Nervensystem - Muskelbiopsie
- Genetik - Behinderung
Keywords
muscle disease - neuromuscular disorder - peripheral nervous system - muscle biopsy
- genetics - disability
Literatur
- 1
Pérez M, Ruiz J R, Fernández Del Valle M et al.
The second wind phenomenon in very young McArdle’s patients.
Neuromuscul Disord.
2009;
19
403-405
- 2
Windpassinger C, Schoser B, Straub V et al.
An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed
XMPMA, is caused by mutations in FHL1.
Am J Hum Genet.
2008;
82
88-99
- 3
Allen R C, Jaramillo J, Black R et al.
Clinical characterization and blepharoptosis surgery outcomes in Hispanic New Mexicans
with oculopharyngeal muscular dystrophy.
Ophthal Plast Reconstr Surg.
2009;
25
103-108
- 4
Monnier N, Laquerrière A, Marret S et al.
First genomic rearrangement of the RYR1 gene associated with an atypical presentation
of lethal neonatal hypotonia.
Neuromuscul Disord.
2009;
19
680-684
- 5
Fu H D, Tang X F, Guo Y P.
Becker muscular dystrophy.
Chin Med J.
1989;
102
373-377
- 6
Kriwalsky M S, Deschauer M, Eckert A W et al.
Orthognathic surgery in a case of infantile facioscapulohumeral muscular dystrophy
with macroglossia.
Oral Maxillofac Surg.
2008;
12
195-198
- 7
Merlini L, Kaplan J C, Navarro C et al.
Homogeneous phenotype of the gypsy limb-girdle MD with the gamma-sarcoglycan C 283Y
mutation.
Neurology.
2000;
54
1075-1079
- 8
Koga M, Abe M, Tateishi J et al.
Two autopsy cases of congenital muscular dystrophy of Fukuyama type – a typical and
an atypical cases.
No To Shinkei.
1984;
36
1103-1108
- 9
Quijano-Roy S, Galan L, Ferreiro A et al.
Severe progressive form of congenital muscular dystrophy with calf pseudohypertrophy,
macroglossia and respiratory insufficiency.
Neuromuscul Disord.
2002;
12
466-475
- 10
Meola G, Scarpini E, Manfredi L et al.
Infantile-acute acid maltase deficiency (Pompe’s disease): studies of muscle cultures.
Basic Appl Histochem.
1984;
28
245-255
- 11
DiMauro S, Nicholson J F, Hays A P et al.
Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency.
Ann Neurol.
1983;
14
226-234
- 12
Zeviani M, Van Dyke D H, Servidei S et al.
Myopathy and fatal cardiopathy due to cytochrome c oxidase deficiency.
Arch Neurol.
1986;
43
1198-1202
- 13
Chauvet E, Sailler L, Carreiro M et al.
Symptomatic macroglossia and tongue myositis in polymyositis: treatment with corticosteroids
and intravenous immunoglobulin.
Arthritis Rheum.
2002;
46
2762-2764
- 14
Gamez J, Armstrong J, Shatunov A et al.
Generalized muscle pseudo-hypertrophy and stiffness associated with the myotilin Ser55Phe
mutation: a novel myotilinopathy phenotype?.
J Neurol Sci.
2009;
277
167-171
- 15
Arai A, Mitsuhashi S, Saito Y et al.
Nemaline (actin) myopathy with myofibrillar dysgenesis and abnormal ossification.
Neuromuscul Disord.
2009;
19
485-488
- 16
Dupré N, Chrestian N, Bouchard J P et al.
Clinical, electrophysiologic and genetic study of non-dystrophic myotonia in French-Canadians.
Neuromuscul Disord.
2009;
19
330-334
- 17
Pradhan S.
Clinical and magnetic resonance imaging features of ‘diamond on quadriceps’ sign in
dysferlinopathy.
Neurol India.
2009;
57
172-175
- 18
Jungbluth H, Lillis S, Zhou H et al.
Late-onset axial myopathy with cores due to a novel heterozygous dominant mutation
in the skeletal muscle ryanodine receptor (RYR1) gene.
Neuromuscul Disord.
2009;
19
344-347
- 19
Eger K, Jordan B, Habermann S et al.
Beevor’s sign in facioscapulohumeral muscular dystrophy: an old sign with new implications.
J Neurol.
2009;
(in press)
- 20
Vondracek P, Hermanova M, Vodickova K et al.
An unusual case of congenital muscular dystrophy with normal serum CK level, external
ophthalmoplegia, and white matter changes on brain MRI.
Eur J Paediatr Neurol.
2007;
11
381-384
- 21 Jerusalem F, Zierz S. Muskelerkrankungen. . Thieme; 1991
- 22
Hogrel J Y, Laforêt P, Ben Yaou R et al.
A non-ischemic forearm exercise test for the screening of patients with exercise intolerance.
Neurology.
2001;
56
1733-1738
- 23
Finsterer J, Milvay E.
Stress lactate in mitochondrial myopathy under constant, unadjusted workload.
Eur J Neurol.
2004;
11
811-816
- 24
Zierz S, Meessen S, Jerusalem F.
Lactate and pyruvate blood levels in the diagnosis of mitochondrial myopathies.
Nervenarzt.
1989;
60
545-548
- 25
Ogasahara S, Yorifuji S, Nishikawa Y et al.
Improvement of abnormal pyruvate metabolism and cardiac conduction defect with coenzyme
Q 10 in Kearns-Sayre syndrome.
Neurology.
1985;
35
372-377
- 26
Trip J, Pillen S, Faber C G et al.
Muscle ultrasound measurements and functional muscle parameters in non-dystrophic
myotonias suggest structural muscle changes.
Neuromuscul Disord.
2009;
19
462-467
- 27
Gallien S, Mahr A, Réty F et al.
Magnetic resonance imaging of skeletal muscle involvement in limb restricted vasculitis.
Ann Rheum Dis.
2002;
61
1107-1109
- 28
Jeppesen T D, Quistorff B, Wibrand F et al.
31P-MRS of skeletal muscle is not a sensitive diagnostic test for mitochondrial myopathy.
J Neurol.
2007;
254
29-37
- 29
Prelle A, Tancredi L, Sciacco M et al.
Retrospective study of a large population of patients with asymptomatic or minimally
symptomatic raised serum creatine kinase levels.
J Neurol.
2002;
249
305-311
- 30
Finsterer J, Stöllberger C, Sehnal E et al.
Apical ballooning (Takotsubo syndrome) in mitochondrial disorder during mechanical
ventilation.
J Cardiovasc Med.
2007;
8
859-863
- 31
Al-Dosary M, Whittaker R G, Haughton J et al.
Neuromuscular disease presentation with three genetic defects involving two genomes.
Neuromuscul Disord.
2009;
19
841-844
- 32
Brockington M, Blake D J, Prandini P et al.
Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular
dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan.
Am J Hum Genet.
2001;
69
1198-1209
- 33
Finsterer J, Stöllberger C.
Primary myopathies and the heart.
Scand Cardiovasc J.
2008;
42
9-24
- 34
Dodson C C, Boachie-Adjei O.
Escobar syndrome (multiple pterygium syndrome) associated with thoracic kyphoscoliosis,
lordoscoliosis, and severe restrictive lung disease: a case report.
HSS J.
2005;
1
35-39
- 35
Lampe A K, Bushby K M.
Collagen VI related muscle disorders.
J Med Genet.
2005;
42
673-685
- 36
Garcia-Angarita N, Kirschner J, Heiliger M et al.
Severe nemaline myopathy associated with consecutive mutations E 74D and H 75Y on
a single ACTA1 allele.
Neuromuscul Disord.
2009;
19
481-484
- 37
Flanigan K M, Kerr L, Bromberg M B et al.
Congenital muscular dystrophy with rigid spine syndrome: a clinical, pathological,
radiological, and genetic study.
Ann Neurol.
2000;
47
152-161
- 38
Makri S, Clarke N F, Richard P et al.
Germinal mosaicism for LMNA mimics autosomal recessive congenital muscular dystrophy.
Neuromuscul Disord.
2009;
19
26-28
- 39
Reimers C D.
Muskelerkrankungen.
Akt Neurol.
2009;
34
333-334
- 40
Morandi L, Angelini C, Prelle A et al.
High plasma creatine kinase: review of the literature and proposal for a diagnostic
algorithm.
Neurol Sci.
2006;
27
303-311
Josef Finsterer, MD, PhD
Krankenanstalt Rudolfstiftung
Postfach 20
1180 Wien
Österreich
eMail: fifigs1@yahoo.de