Subscribe to RSS
DOI: 10.1055/s-0029-1245405
© Georg Thieme Verlag KG Stuttgart · New York
Beeinflusst die kortikospinale (Re)Organisation bei unilateraler Zerebralparese das Ansprechen auf Constraint-Induced Movement Therapy?[1]
Does Corticospinal (Re) Organisation Influence the Outcome of Constraint-Induced Movement Therapy in Patients with Unilateral Cerebral Palsy?Publication History
eingereicht: 30.11.2009
angenommen: 26.1.2010
Publication Date:
27 May 2010 (online)
Zusammenfassung
Hintergrund: Constraint-Induced Movement Therapy (CIMT) ist eine anerkannte therapeutische Methode, die erfolgreich bei erwachsenen Patienten nach Schlaganfall angewandt wird. Auch bei Patienten mit unilateraler Zerebralparese konnte in zahlreichen Studien eine Funktionsverbesserung der betroffenen oberen Extremität nachgewiesen werden.
Ziel: Die Studie untersuchte, ob die Art der kortikospinalen (Re)Organisation die Wirksamkeit der CIMT beeinflusst.
Methode: 9 Patienten, die ihre paretische Hand motorisch mit reorganisierten ipsilateralen Bahnen von der nicht betroffenen Gehirnhälfte ansteuerten (Ipsi-Gruppe), und 7 Patienten mit erhaltenen kortikospinalen Projektionen aus der betroffenen Gehirnhälfte zur paretischen Hand (Kontra-Gruppe) nahmen an einem 12-tägigen CIMT-Trainingscamp teil. Direkt vor und nach dem Trainingsblock als auch bei der Follow-up-Untersuchung erfolgte eine Testung mit dem Wolf Motor Function Test (WMFT).
Ergebnisse: Beide Gruppen verbesserten beim WMFT die Qualität ihrer Bewegungen der betroffenen oberen Extremität. Allerdings benötigten ausschließlich die Patienten mit den erhaltenen kontralateralen Bahnen gleichzeitig auch weniger Zeit für die Bewegungsausführung.
Schlussfolgerungen: Verschiedene Arten kortikospinaler (Re)Organisation sprechen unterschiedlich auf eine Intervention mit CIMT an. Der Erfolg einer CIMT bei Patienten mit kortikospinaler Reorganisation könnte vermutlich durch ergänzendes bimanuelles Üben optimiert werden.
Abstract
Background: Constraint-induced movement therapy (CIMT) is an established therapeutic method for rehabilitation of adults after stroke. Several studies also showed function improvement of the affected upper limb in patients with unilateral cerebal palsy.
Objective: This study investigated whether the type of corticospinal (re)organisation influences the effectiveness of CIMT.
Method: 9 patients who motorically controlled their paretic hand with reorganised ipsilateral tracts of the non-affected brain hemisphere (ipsi-group), and 7 patients with affected brain hemisphere’s sustained corticospinal projection of the paretic hand (contra-group) took part in a 12-day CIMT training camp. Directly before and after the workout session as well as during the follow-up testing with Wolf Motor Function Test (WMFT) was performed.
Results: Both groups improved the affected upper limb’s movement quality during WMFT. However, only patients with sustained contralateral tracks needed less time for movement performance.
Conclusions: Diverse kinds of corticospinal (re)organisation respond differently to CIMMT intervention. Presumably CIMT outcome in patients with corticospinal reorganisation could be optimised by additional bimanual exercise.
Schlüsselwörter
Constraint-Induced Movement Therapy - unilateral spastische Zerbralparese - kortikospinale (Re)Organisation
Key words
Constraint-induced movement therapy - unilateral spastic cerebral palsy - corticospinal (Re)Organisation
1 Unterstützt von der Deutschen Forschungsgemeinschaft (DFG MA 3306/1-1/ DFG BE 3235/1-1, und DFG STA 859 1-1).
Literatur
- 1 Eyre J A, Taylor J P, Villagra F et al. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology. 2001; 57 1543-1554
- 2 Hoare B, Imms C, Carey L et al. Constraint-induced movement therapy in the treatment off the upper limb in children with hemiplegic cerebral palsy: a Cochrane systematic review. Clin Rehabil. 2007; 21 675-685
- 3 Hummel F C, Cohen L G. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?. Lancet Neurol. 2006; 5 708-712
- 4 Kowalczewski J, Gritsenko V, Ashworth N et al. Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery. Arch Phys Med Rehabil. 2007; 88 833-839
- 5 Kuhnke N, Juenger H, Walther M et al. Do patients with congenital hemiparesis and ipsilateral corticospinal projections respond differently to constraint-induced movement therapy?. Developmental Medicine and Child Neurology. 2008; 50 898-903
- 6 Morris D M, Uswatte G, Crago J E et al. The reliability of the Wolf Motor Function Test for assessing upper extremity function after stroke. Arch Phys Med Rehabil. 2001; 82 750-755
- 7 Pang M Y, Harris J E, Eng J J. A community-based upper-extremity group exercise program improves motorfunction and performance of functional activities in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2006; 87 1-9
- 8 Pierce S R, Daly K, Gallagher K G et al. Constraint-induced therapy for a child with hemiplegic cerebral palsy: A case report. Arch Phys Med Rehabil. 2002; 83 1462-1463
- 9 Staudt M, Grodd W, Gerloff C et al. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain. 2002; 125 2222-2237
- 10 Staudt M, Gerloff C, Grodd W et al. Reorganization in congenital hemiparesis acquired at different gestational ages. Ann Neurol. 2004; 56 854-863
- 11 Staudt M, Braun C, Gerloff C et al. Developing somatosensory projections bypass periventricular brain lesions. Neurology. 2006; 67 522-525
- 12 Staudt M, Erb M, Braun C et al. Extensive peri-lesional connectivity in congenital hemiparesis. Neurology. 2006; 66 771
- 13 Sterr A, Elbert T, Berthold I et al. Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: an exploratory study. Arch Phys Med Rehabil. 2002; 83 1374-1377
- 14 Taub E. Somatosensory deafferation research with monkeys: implications for rehabilitation medicine. In Ince L P, (ed) Behavioral Psychology in Rehabilitation Medicine. Clinical Applications.. New York: Williams & Wilkins; 1980
- 15 Taub E, Miller N E, Novack T A et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993; 74 347-354
- 16 Taub E, Crago J E, Burgio L D et al. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav. 1994; 61 281-293
- 17 Taub E, Crago J E, Uswatte G. Constraint-induced movement therapy: a new approach to treatment in physical rehabilitation. Rehabil Psychol. 1998; 43 152-170
- 18 Taub E, Uswatte G, Morris D M. Improved motor recovery after stroke and massive cortical reorganization following Constraint-Induced Movement therapy. Phys Med Rehabil Clin N Am. 2003; 14 S77-S91
- 19 Taub E, Ramey S L, DeLuca S et al. Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatr. 2004; 113 305-312
- 20 Taub E, Uswatte G, King D K et al. A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke. 2006; 37 1045-1049
- 21 Wittenberg G F, Chen R, Ishii K et al. Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair. 2003; 17 48-57
- 22 Wolf S L, Lecraw D E, Barton L A et al. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989; 104 125-132
- 23 Wolf S L, Catlin P A, Ellis M et al. Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke. 2001; 32 1635-1639
- 24 Wolf S L, Winstein C J, Miller J P et al. Effect of constraint-induced movement therapy on upper extremity functin 3 to 9 monthsw after stroke: the EXCITE randomized clinical trial. JAMA. 2006; 296 2095-2104
1 Unterstützt von der Deutschen Forschungsgemeinschaft (DFG MA 3306/1-1/ DFG BE 3235/1-1, und DFG STA 859 1-1).
Sabine Ney
Christa Raabe
PT, Klinik für Kinder und Jugendmedizin
Hoppe-Seyler-Str. 1
72076 Tübingen
Email: Christa.Raabe@med.uni-tuebingen.de