Subscribe to RSS
DOI: 10.1055/s-0029-1245440
© Georg Thieme Verlag KG Stuttgart · New York
Imaging of Brain Metastases of Bronchial Carcinomas with 7 T MRI – Initial Results
Darstellung von Hirnmetastasen von Bronchialkarzinomen mittels 7 T MRT – erste ErgebnissePublication History
received: 28.12.2009
accepted: 20.4.2010
Publication Date:
11 June 2010 (online)

Zusammenfassung
Ziel: Vergleichende Darstellung von Hirnmetastasen von Bronchialkarzinomen mittels suszeptibilitätsgewichteter und kontrastmittelverstärkter 7 T- und 1,5 T-MRT. Material und Methoden: 12 Patienten mit Hirnmetastasen von Bronchialkarzinomen wurden im 7 T- und 1,5 T-MRT untersucht. Minimumintensitätsprojektionen (MinIP) einer 1,5 T-SWI-Sequenz (Voxelgröße = 0,9 × 0,9 × 2,0 mm3) wurden mit 7 T SWI MinIPs (Voxelgröße = 0,4 × 0,4 × 1,5 mm3) verglichen. Eine T 1-w 1,5 T- MPRAGE-Sequenz (Voxelgröße = 1 × 1 × 1 mm3 nach Doppeldosis (DD) Gadoteratmeglumin, Gd-DOTA) wurde mit einer 7 T MPRAGE-Sequenz (Voxelgröße = 0,7 × 0,7 × 0,7 mm3, nach einer Einzeldosis (SD) Gd-DOTA bei allen Patienten sowie bei 6 von 12 Patienten nach Gabe einer DD Gd-DOTA verglichen. Die Anzahl der Mikrohämorrhagien in SWI MinIPs und die Anzahl von kontrastierten Metastasen auf MPRAGE-Bildern wurden von 2 Radiologen, gruppiert in 3 Größenklassen (< 2 mm, ≥ 2 mm and ≤ 6 mm, > 6 mm), verglichen. Ergebnisse: Bei 12 Patienten erlaubten die räumlich höher aufgelösten 7 T-SWI-Bilder die Identifikation von 87 gegenüber 67 zerebralen Mikrohämorrhagien bei 1,5 T. Nach Gabe einer SD Gd-DOTA wurden auf 7 T-MPRAGE-Bildern nur 198 Hirnmetastasen gegenüber 238 Metastasen bei 1,5 T nach DD Gd-DOTA erfasst. Bei 6 Patienten wurden nach Angleichung der Kontrastmitteldosis 4 zusätzliche Hirnmetastasen auf 7 T gegenüber 1,5 T MPRAGE-Bildern ermittelt. Schlussfolgerung: Unsere vorläufigen Ergebnisse deuten an, dass die Detektion von Hirnmetastasen mittels 7 T-MPRAGE-Sequenz nach einer Doppeldosis Kontrastmittel trotz höherer räumlicher Auflösung der 1,5 T-MPRAGE vergleichbar ist, während die 7 T-SWI-Sequenz 20 % mehr Mikrohämorrhagien in Hirnmetastasen zeigen konnte als die 1,5 T-SWI-Sequenz.
Abstract
Purpose: To compare the depiction of brain metastases of bronchial carcinomas on susceptibility-weighted and contrast-enhanced images with 7 T and at 1.5 T MRI. Materials and Methods: Twelve patients with brain metastases of bronchial carcinomas underwent 7 T and 1.5 T MRI. Minimum intensity projections (MinIP) of a 1.5 T SWI sequence (voxel size = 0.9 × 0.9 × 2.0 mm3) were compared to 7 T SWI MinIPs (voxel size = 0.4 × 0.4 × 1.5 mm3). A T 1-w 3D MPRAGE at 1.5 T (voxel size = 1 × 1 × 1 mm3 after double-dose (DD) gadoterate meglumine, Gd-DOTA) was compared to a 7 T MPRAGE sequence (voxel size = 0.7 × 0.7 x × 0.7 mm3, single dose (SD) Gd-DOTA) in all patients, and to DD Gd-DOTA in 6 patients after a 10 minute delay. The number of intracranial microhemorrhages in SWI MinIPs and the number of contrast-enhancing metastases in MPRAGE images were compared in each patient grouped into three size ranges (≤ 2 mm, > 2 mm and < 6 mm, ≥ 6 mm) by two radiologists in consensus. Results: In all 12 patients the 7 T SWI with spatially higher resolution allowed the identification of 87 versus 67 cerebral microhemorrhages at 1.5 T. 7 T T 1-w images after SD Gd-DOTA depicted 198 brain metastases versus 238 at 1.5 T after DD Gd-DOTA. After doubling the contrast dose in six patients, 4 additional brain metastases were identified at 7 T. Conclusion: Our preliminary results indicate that despite the higher spatial resolution the detection of brain metastases on 7 T MPRAGE images is almost equal to 1.5 T MPRAGE images. The 7 T SWI sequence with spatially higher resolution allowed the detection of 20 % more microhemorrhages in brain metastases compared to the 1.5 T SWI sequence.
Key words
7 Tesla - ultra high field MRI - brain metastases - bronchial carcinoma - susceptibility-weighted imaging
References
- 1
Klos K J, O’Neill B P.
Brain metastases.
Neurologist.
2004;
10
31-46
MissingFormLabel
- 2
Biswas G, Bhagwat R, Khurana R et al.
Brain metastasis-evidence based management.
J Cancer Res Ther.
2006;
2
5-13
MissingFormLabel
- 3
Sanchez de Cos J, Sojo Gonzalez M A, Montero M V et al.
Non-small cell lung cancer and silent brain metastasis Survival and prognostic factors.
Lung Cancer.
2009;
63
140-145
MissingFormLabel
- 4
Fuentes R, Bonfill X, Exposito J.
Surgery versus radiosurgery for patients with a solitary brain metastasis from non-small
cell lung cancer.
Cochrane Database of Systematic Reviews.
2006;
1
DOI: 10.1002/14651858.CD004840.pub2
MissingFormLabel
- 5
Smalley S R, Schray M F, Laws E R et al.
Adjuvant radiation therapy after surgical resection of solitary brain metastasis:
association with pattern of failure and survival.
Int J Radiat Oncol Biol Phys.
1987;
13
1611-1616
MissingFormLabel
- 6
Jena Jr A, Taneja S, Talwar V et al.
Magnetic resonance (MR) patterns of brain metastasis in lung cancer patients: correlation
of imaging findings with symptom.
J Thorac Oncol.
2008;
3
140-144
MissingFormLabel
- 7
Engh J A, Flickinger J C, Niranjan A et al.
Optimizing intracranial metastasis detection for stereotactic radiosurgery.
Stereotact Funct Neurosurg.
2007;
85
162-168
MissingFormLabel
- 8
Davis P C, Hudgins P A, Peterman S B et al.
Diagnosis of cerebral metastases: double-dose delayed CT vs contrast-enhanced MR imaging.
Am J Neuroradiol.
1991;
12
293-300
MissingFormLabel
- 9
Taphoorn M J, Heimans J J, Kaiser M C et al.
Imaging of brain metastases. Comparison of computerized tomography (CT) and magnetic
resonance imaging (MRI).
Neuroradiology.
1989;
31
391-395
MissingFormLabel
- 10
Sze G, Shin J, Krol G et al.
Intraparenchymal brain metastases: MR imaging versus contrast-enhanced CT.
Radiology.
1988;
168
187-194
MissingFormLabel
- 11
Runge V M, Kirsch J E, Burke V J et al.
High-dose gadoteridol in MR imaging of intracranial neoplasms.
J Magn Reson Imaging.
1992;
2
9-18
MissingFormLabel
- 12
Hawighorst H, Debus J, Schreiber W et al.
Contrast-enhanced magnetization transfer imaging: improvement of brain tumor conspicuity
and delineation for radiosurgical target volume definition.
Radiother Oncol.
1997;
43
261-267
MissingFormLabel
- 13
Komada T, Naganawa S, Ogawa H et al.
Contrast-enhanced MR imaging of metastatic brain tumor at 3 tesla: utility of T(1)-weighted
SPACE compared with 2D spin echo and 3D gradient echo sequence.
Magn Reson Med Sci.
2008;
7
13-21
MissingFormLabel
- 14
Trattnig S, Pinker K, Ba-Ssalamah A et al.
The optimal use of contrast agents at high field MRI.
Eur Radiol.
2006;
16
1280-1287
MissingFormLabel
- 15
Yuh W T, Christoforidis G A, Koch R M et al.
Clinical magnetic resonance imaging of brain tumors at ultrahigh field: a state-of-the-art
review.
Top Magn Reson Imaging.
2006;
17
53-61
MissingFormLabel
- 16
Mönninghoff C, Maderwald S, Theysohn J M et al.
Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography
– initial experience.
Fortschr Röntgenstr.
2009;
181
16-23
MissingFormLabel
- 17
Yi C A, Shin K M, Lee K S et al.
Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus
3.0-T whole-body MR imaging.
Radiology.
2008;
248
632-642
MissingFormLabel
- 18
Christoforidis G A, Kangarlu A, Abduljalil A M et al.
Susceptibility-based imaging of glioblastoma microvascularity at 8T: correlation of
MR imaging and postmortem pathology.
Am J Neuroradiol.
2004;
25
756-760
MissingFormLabel
- 19
Nobauer-Huhmann I M, Ba-Ssalamah A, Mlynarik V et al.
Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus
1.5 Tesla.
Invest Radiol.
2002;
37
114-119
MissingFormLabel
- 20
Schwindt W, Kugel H, Bachmann R et al.
Magnetic resonance imaging protocols for examination of the neurocranium at 3 T.
Eur Radiol.
2003;
13
2170-2179
MissingFormLabel
- 21
Rauscher A, Sedlacik J, Barth M et al.
Nonnvasive assessment of vascular architecture and function during modulated blood
oxygenation using susceptibility weighted magnetic resonance imaging.
Magn Reson Med.
2005;
54
87-95
MissingFormLabel
- 22
Reichenbach J R, Venkatesan R, Schillinger D J et al.
Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic
contrast agent.
Radiology.
1997;
204
272-277
MissingFormLabel
- 23
Reichenbach J R, Barth M, Haacke E M et al.
High-resolution MR venography at 3.0 Tesla.
J Comput Assist Tomogr.
2000;
24
949-957
MissingFormLabel
- 24
Sehgal V, Delproposto Z, Haddar D et al.
Susceptibility-weighted imaging to visualize blood products and improve tumor contrast
in the study of brain masses.
J Magn Reson Imaging.
2006;
24
41-51
MissingFormLabel
- 25
Strugar J, Rothbart D, Harrington W et al.
Vascular permeability factor in brain metastases: correlation with vasogenic brain
edema and tumor angiogenesis.
J Neurosurg.
1994;
81
560-566
MissingFormLabel
- 26
Theysohn J M, Maderwald S, Kraff O et al.
Subjective acceptance of 7 Tesla MRI for human imaging.
Magma.
2008;
21
63-72
MissingFormLabel
- 27
Ba-Ssalamah A, Nobauer-Huhmann I M, Pinker K et al.
Effect of contrast dose and field strength in the magnetic resonance detection of
brain metastases.
Invest Radiol.
2003;
38
415-422
MissingFormLabel
- 28
Filippi M, Yousry T, Horsfield M A et al.
A high-resolution three-dimensional T 1-weighted gradient echo sequence improves the
detection of disease activity in multiple sclerosis.
Ann Neurol.
1996;
40
901-907
MissingFormLabel
- 29
Kraff O, Theysohn J M, Maderwald S et al.
MRI of the knee at 7.0 Tesla.
Fortschr Röntgenstr.
2007;
179
1231-1235
MissingFormLabel
- 30
Jouvent E, Viswanathan A, Mangin J et al.
Brain atrophy is related to lacunar lesions and tissue microstructural changes in
CADASIL.
Stroke.
2007;
38
1786-1790
MissingFormLabel
- 31
Edelstein W A, Glover G H, Hardy C J et al.
The intrinsic signal-to-noise ratio in NMR imaging.
Magn Reson Med.
1986;
3
604-618
MissingFormLabel
- 32
Yuh W T, Engelken J D, Muhonen M G et al.
Experience with high-dose gadolinium MR imaging in the evaluation of brain metastases.
Am J Neuroradiol.
1992;
13
335-345
MissingFormLabel
- 33
Schneider J P, Krohmer S, Gunther A et al.
Zerebrale Veränderungen bei krisenhafter arterieller Hypertonie: MRT-Befunde der hypertensiven
Enzephalopathie sind wegweisend für die Diagnostik und Therapie.
Fortschr Röntgenstr.
2006;
178
618-626
MissingFormLabel
- 34
Hentschel F, Kreis M, Damian M et al.
Evaulation des Beitrags der radiologischen bildgebenden Diagnostik bei demenziellen
Erkrankungen – ein Vergleich mit der psychologischen Diagnostik.
Fortschr Röntgenstr.
2003;
175
1335-1343
MissingFormLabel
Dr. Christoph Mönninghoff
Institut für diagnostische und interventionelle Radiologie und Neuroradiologie, Universitätsklinikum
Essen
Hufelandstr. 55
45147 Essen
Germany
Phone: ++ 49/2 01/72 38 45 49
Fax: ++ 49/2 01/7 23 15 63
Email: christoph.moenninghoff@uk-essen.de