RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245440
© Georg Thieme Verlag KG Stuttgart · New York
Imaging of Brain Metastases of Bronchial Carcinomas with 7 T MRI – Initial Results
Darstellung von Hirnmetastasen von Bronchialkarzinomen mittels 7 T MRT – erste ErgebnissePublikationsverlauf
received: 28.12.2009
accepted: 20.4.2010
Publikationsdatum:
11. Juni 2010 (online)
Zusammenfassung
Ziel: Vergleichende Darstellung von Hirnmetastasen von Bronchialkarzinomen mittels suszeptibilitätsgewichteter und kontrastmittelverstärkter 7 T- und 1,5 T-MRT. Material und Methoden: 12 Patienten mit Hirnmetastasen von Bronchialkarzinomen wurden im 7 T- und 1,5 T-MRT untersucht. Minimumintensitätsprojektionen (MinIP) einer 1,5 T-SWI-Sequenz (Voxelgröße = 0,9 × 0,9 × 2,0 mm3) wurden mit 7 T SWI MinIPs (Voxelgröße = 0,4 × 0,4 × 1,5 mm3) verglichen. Eine T 1-w 1,5 T- MPRAGE-Sequenz (Voxelgröße = 1 × 1 × 1 mm3 nach Doppeldosis (DD) Gadoteratmeglumin, Gd-DOTA) wurde mit einer 7 T MPRAGE-Sequenz (Voxelgröße = 0,7 × 0,7 × 0,7 mm3, nach einer Einzeldosis (SD) Gd-DOTA bei allen Patienten sowie bei 6 von 12 Patienten nach Gabe einer DD Gd-DOTA verglichen. Die Anzahl der Mikrohämorrhagien in SWI MinIPs und die Anzahl von kontrastierten Metastasen auf MPRAGE-Bildern wurden von 2 Radiologen, gruppiert in 3 Größenklassen (< 2 mm, ≥ 2 mm and ≤ 6 mm, > 6 mm), verglichen. Ergebnisse: Bei 12 Patienten erlaubten die räumlich höher aufgelösten 7 T-SWI-Bilder die Identifikation von 87 gegenüber 67 zerebralen Mikrohämorrhagien bei 1,5 T. Nach Gabe einer SD Gd-DOTA wurden auf 7 T-MPRAGE-Bildern nur 198 Hirnmetastasen gegenüber 238 Metastasen bei 1,5 T nach DD Gd-DOTA erfasst. Bei 6 Patienten wurden nach Angleichung der Kontrastmitteldosis 4 zusätzliche Hirnmetastasen auf 7 T gegenüber 1,5 T MPRAGE-Bildern ermittelt. Schlussfolgerung: Unsere vorläufigen Ergebnisse deuten an, dass die Detektion von Hirnmetastasen mittels 7 T-MPRAGE-Sequenz nach einer Doppeldosis Kontrastmittel trotz höherer räumlicher Auflösung der 1,5 T-MPRAGE vergleichbar ist, während die 7 T-SWI-Sequenz 20 % mehr Mikrohämorrhagien in Hirnmetastasen zeigen konnte als die 1,5 T-SWI-Sequenz.
Abstract
Purpose: To compare the depiction of brain metastases of bronchial carcinomas on susceptibility-weighted and contrast-enhanced images with 7 T and at 1.5 T MRI. Materials and Methods: Twelve patients with brain metastases of bronchial carcinomas underwent 7 T and 1.5 T MRI. Minimum intensity projections (MinIP) of a 1.5 T SWI sequence (voxel size = 0.9 × 0.9 × 2.0 mm3) were compared to 7 T SWI MinIPs (voxel size = 0.4 × 0.4 × 1.5 mm3). A T 1-w 3D MPRAGE at 1.5 T (voxel size = 1 × 1 × 1 mm3 after double-dose (DD) gadoterate meglumine, Gd-DOTA) was compared to a 7 T MPRAGE sequence (voxel size = 0.7 × 0.7 x × 0.7 mm3, single dose (SD) Gd-DOTA) in all patients, and to DD Gd-DOTA in 6 patients after a 10 minute delay. The number of intracranial microhemorrhages in SWI MinIPs and the number of contrast-enhancing metastases in MPRAGE images were compared in each patient grouped into three size ranges (≤ 2 mm, > 2 mm and < 6 mm, ≥ 6 mm) by two radiologists in consensus. Results: In all 12 patients the 7 T SWI with spatially higher resolution allowed the identification of 87 versus 67 cerebral microhemorrhages at 1.5 T. 7 T T 1-w images after SD Gd-DOTA depicted 198 brain metastases versus 238 at 1.5 T after DD Gd-DOTA. After doubling the contrast dose in six patients, 4 additional brain metastases were identified at 7 T. Conclusion: Our preliminary results indicate that despite the higher spatial resolution the detection of brain metastases on 7 T MPRAGE images is almost equal to 1.5 T MPRAGE images. The 7 T SWI sequence with spatially higher resolution allowed the detection of 20 % more microhemorrhages in brain metastases compared to the 1.5 T SWI sequence.
Key words
7 Tesla - ultra high field MRI - brain metastases - bronchial carcinoma - susceptibility-weighted imaging
References
- 1 Klos K J, O’Neill B P. Brain metastases. Neurologist. 2004; 10 31-46
- 2 Biswas G, Bhagwat R, Khurana R et al. Brain metastasis-evidence based management. J Cancer Res Ther. 2006; 2 5-13
- 3 Sanchez de Cos J, Sojo Gonzalez M A, Montero M V et al. Non-small cell lung cancer and silent brain metastasis Survival and prognostic factors. Lung Cancer. 2009; 63 140-145
- 4 Fuentes R, Bonfill X, Exposito J. Surgery versus radiosurgery for patients with a solitary brain metastasis from non-small cell lung cancer. Cochrane Database of Systematic Reviews. 2006; 1 DOI: 10.1002/14651858.CD004840.pub2
- 5 Smalley S R, Schray M F, Laws E R et al. Adjuvant radiation therapy after surgical resection of solitary brain metastasis: association with pattern of failure and survival. Int J Radiat Oncol Biol Phys. 1987; 13 1611-1616
- 6 Jena Jr A, Taneja S, Talwar V et al. Magnetic resonance (MR) patterns of brain metastasis in lung cancer patients: correlation of imaging findings with symptom. J Thorac Oncol. 2008; 3 140-144
- 7 Engh J A, Flickinger J C, Niranjan A et al. Optimizing intracranial metastasis detection for stereotactic radiosurgery. Stereotact Funct Neurosurg. 2007; 85 162-168
- 8 Davis P C, Hudgins P A, Peterman S B et al. Diagnosis of cerebral metastases: double-dose delayed CT vs contrast-enhanced MR imaging. Am J Neuroradiol. 1991; 12 293-300
- 9 Taphoorn M J, Heimans J J, Kaiser M C et al. Imaging of brain metastases. Comparison of computerized tomography (CT) and magnetic resonance imaging (MRI). Neuroradiology. 1989; 31 391-395
- 10 Sze G, Shin J, Krol G et al. Intraparenchymal brain metastases: MR imaging versus contrast-enhanced CT. Radiology. 1988; 168 187-194
- 11 Runge V M, Kirsch J E, Burke V J et al. High-dose gadoteridol in MR imaging of intracranial neoplasms. J Magn Reson Imaging. 1992; 2 9-18
- 12 Hawighorst H, Debus J, Schreiber W et al. Contrast-enhanced magnetization transfer imaging: improvement of brain tumor conspicuity and delineation for radiosurgical target volume definition. Radiother Oncol. 1997; 43 261-267
- 13 Komada T, Naganawa S, Ogawa H et al. Contrast-enhanced MR imaging of metastatic brain tumor at 3 tesla: utility of T(1)-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence. Magn Reson Med Sci. 2008; 7 13-21
- 14 Trattnig S, Pinker K, Ba-Ssalamah A et al. The optimal use of contrast agents at high field MRI. Eur Radiol. 2006; 16 1280-1287
- 15 Yuh W T, Christoforidis G A, Koch R M et al. Clinical magnetic resonance imaging of brain tumors at ultrahigh field: a state-of-the-art review. Top Magn Reson Imaging. 2006; 17 53-61
- 16 Mönninghoff C, Maderwald S, Theysohn J M et al. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography – initial experience. Fortschr Röntgenstr. 2009; 181 16-23
- 17 Yi C A, Shin K M, Lee K S et al. Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology. 2008; 248 632-642
- 18 Christoforidis G A, Kangarlu A, Abduljalil A M et al. Susceptibility-based imaging of glioblastoma microvascularity at 8T: correlation of MR imaging and postmortem pathology. Am J Neuroradiol. 2004; 25 756-760
- 19 Nobauer-Huhmann I M, Ba-Ssalamah A, Mlynarik V et al. Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 Tesla. Invest Radiol. 2002; 37 114-119
- 20 Schwindt W, Kugel H, Bachmann R et al. Magnetic resonance imaging protocols for examination of the neurocranium at 3 T. Eur Radiol. 2003; 13 2170-2179
- 21 Rauscher A, Sedlacik J, Barth M et al. Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med. 2005; 54 87-95
- 22 Reichenbach J R, Venkatesan R, Schillinger D J et al. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997; 204 272-277
- 23 Reichenbach J R, Barth M, Haacke E M et al. High-resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr. 2000; 24 949-957
- 24 Sehgal V, Delproposto Z, Haddar D et al. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging. 2006; 24 41-51
- 25 Strugar J, Rothbart D, Harrington W et al. Vascular permeability factor in brain metastases: correlation with vasogenic brain edema and tumor angiogenesis. J Neurosurg. 1994; 81 560-566
- 26 Theysohn J M, Maderwald S, Kraff O et al. Subjective acceptance of 7 Tesla MRI for human imaging. Magma. 2008; 21 63-72
- 27 Ba-Ssalamah A, Nobauer-Huhmann I M, Pinker K et al. Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol. 2003; 38 415-422
- 28 Filippi M, Yousry T, Horsfield M A et al. A high-resolution three-dimensional T 1-weighted gradient echo sequence improves the detection of disease activity in multiple sclerosis. Ann Neurol. 1996; 40 901-907
- 29 Kraff O, Theysohn J M, Maderwald S et al. MRI of the knee at 7.0 Tesla. Fortschr Röntgenstr. 2007; 179 1231-1235
- 30 Jouvent E, Viswanathan A, Mangin J et al. Brain atrophy is related to lacunar lesions and tissue microstructural changes in CADASIL. Stroke. 2007; 38 1786-1790
- 31 Edelstein W A, Glover G H, Hardy C J et al. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med. 1986; 3 604-618
- 32 Yuh W T, Engelken J D, Muhonen M G et al. Experience with high-dose gadolinium MR imaging in the evaluation of brain metastases. Am J Neuroradiol. 1992; 13 335-345
- 33 Schneider J P, Krohmer S, Gunther A et al. Zerebrale Veränderungen bei krisenhafter arterieller Hypertonie: MRT-Befunde der hypertensiven Enzephalopathie sind wegweisend für die Diagnostik und Therapie. Fortschr Röntgenstr. 2006; 178 618-626
- 34 Hentschel F, Kreis M, Damian M et al. Evaulation des Beitrags der radiologischen bildgebenden Diagnostik bei demenziellen Erkrankungen – ein Vergleich mit der psychologischen Diagnostik. Fortschr Röntgenstr. 2003; 175 1335-1343
Dr. Christoph Mönninghoff
Institut für diagnostische und interventionelle Radiologie und Neuroradiologie, Universitätsklinikum Essen
Hufelandstr. 55
45147 Essen
Germany
Telefon: ++ 49/2 01/72 38 45 49
Fax: ++ 49/2 01/7 23 15 63
eMail: christoph.moenninghoff@uk-essen.de