Klin Monbl Augenheilkd 2010; 227(8): 617-623
DOI: 10.1055/s-0029-1245524
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Blaufilter-Intraokularlinsen – derzeitige Datenlage

Blue Light-Filtering IOLs – Currently Available DataA. J. Augustin1
  • 1Augenklinik, Klinikum Karlsruhe
Further Information

Publication History

Eingegangen: 20.4.2010

Angenommen: 17.5.2010

Publication Date:
12 August 2010 (online)

Zusammenfassung

Daten aus experimentellen und epidemiologischen Untersuchungen haben einen potenziellen Zusammenhang zwischen dem Entfernen der natürlichen Linse, den damit verbundenen, in der Folge entstehenden, photooxidativen Veränderungen der Netzhaut und dem Fortschreiten der altersbedingten Makuladegeneration hergestellt. Ein wesentlicher Faktor könnte der ungeschützte Einfall von blauem Licht sein. In den letzten Jahren wurden deshalb sog. Blaufilterlinsen zum Schutz der Netzhaut eingesetzt. Der vorliegende Beitrag basiert auf einer Datenbankrecherche (Pub Med, National Library of Medicine, USA) und fasst den momentanen Kenntnisstand zum Einsatz von Blaufilterlinsen zusammen: Modellversuche haben gezeigt, dass Blaufilterlinsen im Vergleich zu herkömmlichen UV-Filterlinsen für deutlich reduzierte Mengen an blauem Licht durchlässig sind und sowohl Zellschädigung als auch Bildung von Entzündungsmarkern wie VEGF reduzieren. Die Mehrzahl der vorhandenen klinischen Daten belegt die Kompatibilität von Blaufilterlinsen hinsichtlich Sehschärfe, Kontrast- und Farbsehen sowie subjektiv empfundener Sehqualität, jedoch berichten einzelne Beiträge von einer verminderten Kontrastsensitivität und eingeschränktem Dämmerungssehen. Das gilt auch für den zirkadianen Rhythmus, wobei zu diesem physiologischen Parameter nur theoretische Erwägungen existieren. Langfristige Studien, die belegen, dass Blaufilterlinsen tatsächlich die Inzidenz von Netzhauterkrankungen wie AMD senken, sind bisher nicht verfügbar.

Abstract

Data from both experimental and epidemiological trials have suggested a potential correlation between extraction of the natural lens associated with exposure to photo-oxidative stress to the retina and a progression of diseases such as AMD. A fundamental factor could be the unchecked exposure to blue light. This is why in the past years so-called blue light-filtering intraocular lenses have been implanted to serve as a protection to the retina. The following contribution is based on a data base research (Pub Med, National Library of Medicine, USA) and summarises information currently available on the use of blue light-filtering lenses. Experimental modeling has shown that, compared to regular UV lenses, blue light-filtering lenses block a considerable part of blue light transmission to the retina and reduce damage to retinal cells and production of inflammatory markers such as VEGF. The majority of the clinical data demonstrate that blue light-filtering lenses are compatible in terms of visual acuity, contrast sensitivity and colour perception as well as patient-rated quality of vision. But a few additional studies report reduced contrast sensitivity and limitations in mesopic vision.This is also true for the circadian rhythm. However, the evaluation of this parameter in connection with blue light-filtering lenses has only been done on a theoretical basis. Long-term data showing that blue light-filtering lenses actually do reduce the incidence of retinal diseases such as AMD are currently not available.

Literatur

  • 1 Mainster M A, Ham W T, Delori F C. Potential Hazards: Instrument and environmental light sources.  Opthalmology. 1983;  90 927-932
  • 2 Paultler E L, Morita Jr M, Beezley D. Reversible and irreversible blue light damage to the isolated mammalian pigment epithelium. In LaVail M M, Anderson R E, Hollyfield J G, eds Inherited and Environmentally induced Retinal degenerations. New York: Alan R Liss; 1989: 555-567
  • 3 Putting B J, Van Best J A, Vrensen G FJM et al. Blue-light induced dysfunction of the blood retinal barrier at the pigment epithelium in albino versus pigmented rabbits.  Exp Eye Res. 1994;  58 31-40
  • 4 Hünig S, Hünig G. Preferring blue light-filtering lenses (Blaudämpfende Linse vorziehen) (Letter).  Deutsches Ärzteblatt Int. 2010;  107 151
  • 5 Kohnen T, Baumeister M, Kook D et al. Cataract surgery with implantation of an artificial lens (Kataraktchirurgie mit Implantation einer Kunstlinse).  Dtsch Artzebl Int. 2009;  106 695-702
  • 6 Mester U, Holz F, Kohnen T et al. Intraindividual comparison of a blue-light filter on visual function: AF-1 (UY) versus AF-1 (UV) intraocular lens.  J Cataract Refract Surg. 2008;  34 608-615
  • 7 Mainster M A. Intraocular Lenses Should Block UV Radiation and Violet but Not Blue Light.  Arch Ophthalmol. 2005;  123 550-555
  • 8 Young R W. Pathophysiology of age–related macular degeneration.  Surv Ophthalmol. 1987;  31 291-306
  • 9 Shaban H, Richter C. A2E and blue light in the retina: the paradigm of age-related macular degeneration.  Biol Chem. 2002;  383 537-545
  • 10 Whilmark U, Wrigstad A, Roberg K et al. Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation.  Free Rad Biol Med. 1997;  22 1229-1234
  • 11 Toyoda Y, Thomson L R, Langner A et al. Effect of dietary zeaxanthin on tissue distribution of zeaxanthin and lutein in quail.  Invest Ophthalmol Vis Sci. 2002;  43 1210-1221
  • 12 Young R W. Solar radiation and age–related macular degeneration.  Surv Ophthalmol. 1988;  32 252-269
  • 13 De La Paz M A, Anderson R E. Lipid peroxidation in rod outer segments.  Invest Ophth Vis Sci. 1992;  33 2091-2096
  • 14 De La Paz M A, Anderson R E. Region and age–dependent variation in susceptibility of the human retina to lipid peroxidation.  Invest Ophth Vis Sci. 1992;  33 3497-3499
  • 15 Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage.  J Photochem Photobiol. 2001;  64 144-161
  • 16 Hammond B R, Wooten B R, Snodderly D M. Density of the human crystalline lens is related to the macular pigment carotenoids, lutein and zeaxanthin.  Optom Vis Sci. 1997;  74 499-504
  • 17 Wang J J, Klein R, Smith W et al. Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: pooled findings from the Beaver Dam and Blue Mountains eye studies.  Ophthalmology. 2003;  110 1960-1967
  • 18 Cugati S, Mitchell P, Rochtchina E. Cataract surgery and the 10-year incidence of age-related maculopathy: the Blue Mountains Eye Study.  Ophthalmology. 2006;  113 2020-2025
  • 19 Carson D, Margrain T H, Patel A. New approach to evaluate retinal protection by intraocular lenses against age-related lipofuscin accumulation-mediated retinal phototoxicity.  J Cataract Refract Surg. 2008;  34 1785-1792
  • 20 Yanagi Y, Inoue Y, Iriyama A et al. Effects of yellow intraocular lenses on light-induced upregulation of vascular endothelial growth factor.  J Cataract Refractive Surg. 2006;  32 1540-1544
  • 21 Kernt M, Neubauer A S, Liegl R et al. Cytoprotective effects of a blue light-filtering intraocular lens on human retinal pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha, Bax, and Bcl-2 expression.  J Cataract Refract Surg. 2009;  35 354-362
  • 22 Hui S, Yi L, Fengling Q L. Effects of light exposure and the use of intraocular lens on retinal pigment epithelial cells in vitro.  Photochem Photobiol. 2009;  85 966-969
  • 23 Rezai K A, Gasyne E, Seagle B L et al. AcrySof Natural filter decreases blue light-induced apoptosis in human retinal pigment epithelium.  Graefes Arch Clin Exp Ophthalmol. 2008;  246 671-676
  • 24 Cuthbertson F M, Peirson S N, Wulff K et al. Blue light-filtering intraocular lenses: review of potential benefits and side effects.  J Cataract Refract Surg. 2009;  35 12 881-1297
  • 25 Nolan J M, O’Reilly P, Loughman J et al. Augmentation of macular pigment following implantation of blue light-filtering intraocular lenses at the time of cataract surgery.  Invest Ophthalmol Vis Sci. 2009;  50 4777-4785
  • 26 Marshall J, Cionni R J, Davison J et al. Clinical results of the blue-light filtering AcrySof Natural foldable acrylic intraocular lens.  J Cataract Refractive Surg. 2005;  31 2319-2323
  • 27 Wohlfahrt C, Tschuschnig K, Fellner et al. Visuelle Funktion mit Blaulichtfilter-IOL (Visual function with blue light filter IOLs).  Klin Monbl Augenheilkd. 2007;  224 23-27
  • 28 Eberhard R, Roberti P, Prünte C. Intraindividual comparison of color perception and contrast sensitivity with and without a blue-light filtering intraocular lens.  Eur J Ophth. 2009;  19 235-239
  • 29 Rodriguez-Galietero A, Montes-Mico R, Muñoz G et al. Comparison of contrast sensitivity and color discrimination after clear and yellow intraocular lens implantation.  J Cataract Refractive Surg. 2005;  31 1736-1740
  • 30 Cionni R J, Tsai J H. Color perception with AcrySof natural and AcrySof single-piece intraocular lenses under photopic and mesopic conditions.  J Cataract Refractive Surg. 2006;  32 236-242
  • 31 Mayer S, Wirbelauer C, Pham D T. Functional results after intraocular lens implantation with or without blue light filter: an intraindividual comparison.  Klin Monbl Augenheilkd. 2006;  223 142-146
  • 32 Schmidinger G, Menapace R, Pieh S. Intraindividual comparison of color contrast sensitivity in patients with clear and blue-light-filtering intraocular lenses.  J Cataract Refract Surg. 2008;  34 769-773
  • 33 Espindle D, Crawford B, Maxwell A et al. Quality-of-life improvements in cataract patients with bilateral blue light-filtering intraocular lenses: clinical trial.  J Cataract Refract Surg. 2005;  31 1952-1959
  • 34 Barisic A, Dekaris I, Gabrić N et al. Blue light filtering intraocular lenses in phacoemulsification cataract surgery.  Coll Antropol. 2007;  31 57-60
  • 35 Ao M, Chen X, Huang C et al. Color discrimination by patients with different types of light-filtering intraocular lenses.  J Cataract Refract Surg. 2010;  36 389-395
  • 36 Augustin A J. The physiology of scotopic vision, contrast vision, color vision and circadian rhythmicity. Can these parameters be influenced by blue-light-filter lenses?.  Retina. 2008;  28 1179-1187
  • 37 Monnet D, Tepenier L, Brézin A P. Objective assessment of inflammation after cataract surgery: comparison of 3 similar intraocular lens models.  J Cataract Refract Surg. 2009;  35 677-681
  • 38 Rodriguez-Galietero A, Montes-Mico R, Muñoz G et al. Blue-light filtering intraocular lens in patients with diabetes: Contrast sensitivity and chromatic discrimination.  J Cataract Refractive Surg. 2005;  31 2088-2092
  • 39 Bhattacharjee H, Bhattacharjee K, Medhi J. Visual Performance: Comparison of foldable intraocular lenses.  J Cataract Refract Surg. 2006;  32 451-455
  • 40 Hammond B R, Bernstein B, Dong J. The Effect of the AcrySof natural lens on glare disability and photostress.  Am J Ophthalmol. 2009;  148 272-276
  • 41 Reddy P, Gao X, Barnes R et al. The economic impact of blue-filtering intraocular lenses on age-related macular degeneration associated with cataract surgery: a third-party payer’s perspective.  Curr Med Res Opin. 2006;  22 1311-1318
  • 42 Arnarsson A, Sverrison T, Stefánsson E et al. Risk factors for five-year incident age-related macular degeneration: the Reykjavik Eye Study.  Am J Ophthalmol. 2006;  142 419-428
  • 43 Clemons T E, Milton R C, Klein R et al. Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS report no. 19).  Ophthalmology. 2005;  112 533-539
  • 44 Chen S J, Cheng C Y, Peng K L et al. Prevalence and associated risk factors of age-related macular degeneration in an elderly Chinese population in Taiwan: the Shihpai Eye Study.  Invest Ophthal Vis Sci. 2008;  49 3126-3133
  • 45 Schaft T L, Mooy C M, Bruijn de W C et al. Increased prevalence of disciform ocular degeneration after cataract extraction with implantation of an intraocular lens.  Br J Ophthalmol. 1994;  78 441-445
  • 46 Wirtitsch M G, Schmidinger van der G, Prskavec M et al. Influence of blue-light-filtering intraocular lenses on color perception and contrast acuity.  Ophthalmol. 2009;  116 39-45
  • 47 Kraats van de J, Norren van D. Sharp cutoff filters in intraocular lenses optimize the balance between light perception and light protection.  J Cataract Refract Surg. 2007;  33 879-887
  • 48 Mainster M A, Turner P L. Blue-blocking intraocular lenses: myth or reality?.  Am J Ophthalmol. 2009;  147 8-10
  • 49 Mainster M A, Turner P L. Blue-blocking IOLs decrease photoreception without providing significant photoprotection.  Survey of Ophthalmology. 2009;  55 272-283
  • 50 Werner J S. Night vision in the elderly: consequences for seeing through a „blue filtering” intraocular lens.  Br J Ophthalmol. 2005;  89 1518-1521
  • 51 Aschoff J. Circadian Rhythms in Man.  Science. 1965;  148 1427-1432
  • 52 Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors.  Chem Rev. 2003;  103 2203-2237
  • 53 Ralph M R, Foster R G, Davis F C et al. Transplanted suprachiasmatic nucleus determines circadian period.  Science. 1990;  247 975-978
  • 54 Hannibal J, Hindersson P, Ostergaard J et al. Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract.  Invest Ophthalmol Vis Sci. 2004;  45 4202-4209
  • 55 Berson D M. Phototransduction in ganglion-cell photoreceptors.  Pflügers Arch. 2007;  454 849-855
  • 56 Qiu X, Kumbalasiri T, Carlson S M et al. Induction of photosensitivity by heterologous expression of melanopsin.  Nature. 2005;  433 745-749
  • 57 Panda S, Nayak S, Campo B et al. Illumination of the melanopsin signalling pathway.  Science. 2005;  307 600-604
  • 58 Provencio I, Rodriguez I R, Jiang G et al. A Novel Human Opsin in the Inner Retina.  J Neuroscience. 2000;  20 600-605
  • 59 Berson D M, Dunn F A, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock.  Science. 2002;  295 1070-1073
  • 60 Dacey D M, LIao H W, Peterson B B et al. Melanopsin expressing ganglion cells in primate retina signal color and irradiance and project to the LGN.  Nature. 2005;  433 749-754
  • 61 Klein D C, Moore R Y. Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the hypothalamic tract and the suprachiasmatic nucleus.  Brain Res. 1979;  174 245-262
  • 62 Larsen P J, Enquist L W, Card J P. Characterization of the multisynaptic neuronal control of the rat pineal gland using viral transneuronal tracing.  Eur J Neurosci. 1998;  10 128-145
  • 63 Gooley J J, Lu J, Fischer D et al. A Broad role for Melanopsin in nonvisual Photoreception.  J Neurosci. 2003;  18 7039-7106
  • 64 Czeisler C A, Shannahan T L, Klerman E B et al. Suppression of melatonin secretion in some blind patients by exposure to bright light.  N Engj J Med. 1995;  332 6-11
  • 65 Lockley S W, Skene D J, Arendt J et al. Relationship between melatonin rhythms and visual loss in the blind.  J Clin Endocrinol Metab. 1997;  82 3763-3770
  • 66 Perez-Leon J A, Warren E J, Allen C N et al. Synaptic inputs to retinal ganglion cells that set the circadian clock.  Eur J Neurosci. 2006;  24 1117-1123
  • 67 Panda S, Sato T K, Castrucci A M et al. Melanopsin (Opn4) requirement for normal light induced circadian phase shifting.  Science. 2002;  298 2213-2216
  • 68 Herbert M, Martin S K, Lee C et al. The effects of prior light history on the suppression of melatonin by light in humans.  J Pineal Res. 2002;  33 198-203
  • 69 Hankins M W, Lucas R J. The primary visual pathway in humans is regulated according to Long term Light exposure through the action of a nonclassical photopigment.  Curr Biol. 2002;  12 191-198

Prof. Dr. Albert J. Augustin

Augenklinik, Klinikum Karlsruhe

Moltkestraße 90

76133 Karlsruhe

Phone: ++ 49/7 21/9 74 20 01

Fax: ++ 49/7 21/9 74 20 09

Email: albertjaugustin@googlemail.com