RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245609
© Georg Thieme Verlag KG Stuttgart · New York
Das okuläre Surfactant-System und dessen Rolle bei entzündlichen Erkrankungen der Augenoberfläche
The Ocular Surfactant System and its Relevance in the Dry EyePublikationsverlauf
Eingegangen: 18.12.2009
Angenommen: 28.6.2010
Publikationsdatum:
12. November 2010 (online)

Zusammenfassung
Die Gewebe der Augenoberfläche und des Tränensystems unterliegen aufgrund ihres ständigen Kontakts mit der Umwelt einer Fülle von exogenen Einflüssen, wie Mikroorganismen oder pathogen assoziierten Molekülen. Ein funktionelles Abwehrsystem ist daher unerlässlich zur Vermeidung von Infektionen oder Erkrankungen des Auges und des Tränensystems. In den letzten Jahren konnten die 4 bislang bekannten Surfactant-Proteine (SP-A, -B, -C, -D) an der Augenoberfläche und im Tränenapparat nachgewiesen werden. Die Surfactant-Proteine besitzen in der Lunge lebensnotwendige immunologische und oberflächenaktive Funktionen, welche im Hinblick auf die Funktionalität und Stabilität des Tränenfilms eine bedeutende Rolle einnehmen könnten.
Abstract
The amphiphilic surfactant proteins B (SP-B) and C (SP-C) are tightly bound to phospholipids. These proteins play important roles in maintaining the surface tension-lowering properties of pulmonary surfactant. Surfactant protein A (SP-A) and D (SP-D) are hydrophilic and are thought to have a role in recycling surfactant and, especially, in improving host defense in the lung. Moreover, SP-A supports the hydrophobic surfactant proteins B and during surfactant subtype assembly and inhibits the secretion of lamellar bodies into the alveolar space. During recent years surfactant proteins have also been detected at locations outside the lung such as the lacrimal apparatus. In this review, the latest information regarding SP function and regulation in the human lacrimal system, the tear film and the ocular surface is summarised with regard to dry eye, rheological and antimicrobial properties of the tear film, tear outflow, certain disease states and possible therapeutic perspectives.
Schlüsselwörter
Surfactant-Proteine - Augenoberfläche - Tränenfilm - Tränenapparat
Key words
surfactant proteins - ocular surface - tear film - lacrimal apparatus
Literatur
- 1
Resnikoff S, Pascolini D, Mariottia S et al.
Global magnitude of visual impairment caused by uncorrected refractive errors in 2004.
Bulletin of the World Health Organization.
2008;
86
63-70
MissingFormLabel
- 2
De Paiva C, Chen Z, Koch D et al.
The Incidence and Risk Factors for Developing Dry Eye After Myopic LASIK.
American Journal of Ophthalmology.
141
Issue 3
438-445
MissingFormLabel
- 3
Michael A.
Lemp Advances in Understanding and Managing Dry Eye Disease.
American Journal of Ophthalmology.
2008;
MissingFormLabel
- 4 McDonald M. ”With LASIK, roughly half of my patients had dry eye complaints after surgery – and
in about half of these, the symptoms were severe.” December/2005 http://RefractiveEyecare.com
MissingFormLabel
- 5
Khali M B, Latkany R A, Speaker M G et al.
Effect of Punctal Plugs in Patients With Low Refractive Errors Considering Refractive
Surgery.
Journal of Refractive Surgery.
2007;
23 (5)
467-471
MissingFormLabel
- 6
Baum J.
Infections of the eye.
Clin Infect Dis.
1995;
21
479-488
MissingFormLabel
- 7
Gritz D C, Whitcher J P.
Topical issues in the treatment of bacterial keratitis.
Int Ophthaomol Clin.
1998;
38
107-114
MissingFormLabel
- 8
Brennan N A, Chantal Coles M L.
Extended wear in perspective.
Invest Ophthalmol Vis Sci.
1997;
74
609-623
MissingFormLabel
- 9
Levartovsky S, Rosenwasser G, Goodman D.
Bacterial keratitis following laser in situ keratomileusis.
Ophthalmology.
2001;
108
321-325
MissingFormLabel
- 10
Fleiszig S MJ, Efron N, Pier G B.
Extended contact lens wear enhances Pseudomonas aeruginosa adherence to human conrneal
epithelium.
Invest Ophthalmol Vis Sci.
1992;
33
2908-2916
MissingFormLabel
- 11 v Brandis H J. Anatomie und Physiologie für Krankenschwestern und andere Medizinalberufe. Fischer. Stuttgart, New York; 1985 6. Aufl
MissingFormLabel
- 12
Souza G A, Godoy L M, Mann de M.
Identification of 491 proteins in the tear fluid proteome reveals a large number of
proteases and protease inhibitors.
Genome Biol.
2006;
7 (8)
R72
Epub 2006 Aug 10
MissingFormLabel
- 13
Fleming A.
On a remarkable bacteriolytic element found in tissues and secretions.
Proc R Soc B.
1922;
93
306-317
MissingFormLabel
- 14
Pleyer U, Baatz H.
Antibacterial protection of the ocular surface.
Ophthalmologica.
1997;
211 (Suppl 1)
2-8
MissingFormLabel
- 15
Oram J, Reiter B.
Inhibition of bacteria by lactoferrin and other iron-chelating agents.
Biochim Biophys Acta.
1979;
170
351-353
MissingFormLabel
- 16
Kijlstra A.
The role of lactoferrin in the nonspecific immune response on the ocular surface.
Regul Immunol.
1990;
3
193-197
MissingFormLabel
- 17
Fluckinger M, Haas H, Merschak P et al.
Human tear lipocalin exhigits antimicrobial activity by scavenging microbial siderophores.
Antimicrob Agents Chem.
2004;
48
3367-3372
MissingFormLabel
- 18
Mudgil P, Millar T J.
Adsorption of apo- and holo-tear lipocalin to a bovine Meibomian lipid film.
TJ Exp Eye Res.
2008;
86 (4)
622-628 Jan 12
Jan 12. Epub 2008
MissingFormLabel
- 19
Qu X D, Lehrer R I.
Secretory phospholipase A 2 is the principal bactericide for staphylococci and other
gram-positive bacteria in human tears.
Infect Immun.
1998;
66
2791-2799
MissingFormLabel
- 20
Girgis D O, Dajcs J J, O’Callaghan R J.
Phospholipase A 2 activity in normal and Staphylococcus aureus-infected rabbit eyes.
Invest Ophthalmol Vis Sci.
2003;
44
197-202
MissingFormLabel
- 21
Garreis F, Schlorf T, Worlitzsch D et al.
Expanding the Roles of Human-Defensins in Innate Immune Defense at the Ocular Surface:
Arming and Alarming Corneal and Conjunctival Epithelial Cells.
Investigative Ophthalmology & Visual Science (IOVS).
(in press)
MissingFormLabel
- 22
Dermott A M.
Defensins and other antimicrobial peptides at the ocular surface.
Ocul Surf.
2004;
2
229-247
MissingFormLabel
- 23
Fearson D, Austen K.
The alternative pathway of complement: A system for host resistance to microbial infection.
N Engl J Med.
1980;
303
259-261
MissingFormLabel
- 24
Qureshi S T, Gros P, Malo D.
Host resistance to infection: Genetic control of ipopolysaccharide responsiveness
by TOLL-like receptor genes.
Elsevier Science.
: S 0168 – 9525(99)01 782 - 5 TIG
1999;
MissingFormLabel
- 25 Paulsen F, Varoga D, Steven P. et al .Antimicrobial peptides at the ocular surface. In Zierhut M, Stern M E, Sullivan D A, (eds) Immunology of Lacrimal Gland and Tear Film.. London: Taylor & Francis; 2005: 97-104
MissingFormLabel
- 26 Garreis F, Gottschalt M, Paulsen F. Antimicrobial peptides as major part of the innate immune defense at the ocular surface. In Brewitt H, (ed) Research projects in dry eye syndrome.. Basel: Dev Ophthalmol, Karger; (in press), 2010
MissingFormLabel
- 27
Bräuer L, Kindler C, Jäger K et al.
Detection of surfactant proteins A and D in human tear fluid and the human lacrimal
system.
Invest Ophthalmol Vis Sci.
2007;
48
3945-3953
MissingFormLabel
- 28
Bräuer L, Börgermann J, Johl M et al.
Detection and localization of the hydrophobic surfactant proteins B and C in human
tear fluid and the human lacrimal system.
Curr Eye Res.
2007;
32
931-938
MissingFormLabel
- 29
Von Neegaard K.
Neue Auffassungen über einen Grundbegriff der Atemmechanik.
ZGesamte Exp Med.
1929;
66
373-394
MissingFormLabel
- 30
Klaus M H, Clements J A, Havel R J.
Composition of surface-active material isolatedfrom beef lung.
Proc Natl Acad Sci USA.
1961;
47
1858-1859
MissingFormLabel
- 31
King R J, Klass D J, Gikas E G.
Isolation of apoproteins from canine surface active material.
Am J Pathol.
1973;
224
788-795
MissingFormLabel
- 32
Van Iwaarden F, Welmers B, Verhoef J et al.
Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar
macrophages.
Am J Respir Cell Mol Biol.
1990;
2
91-98
MissingFormLabel
- 33
Polin R A, Fox W W.
Fetal and neonatal physiology.
(3rd ed.).
1997;
1275-1283
MissingFormLabel
- 34
Nogee L M.
Genetics of the hydrophobic surfactant proteins.
Biochim Biophy Acta.
1998;
1408
323-333
MissingFormLabel
- 35
Voorhout W F, Veenendaal T, Haagsman H P et al.
Intracellular processing of pulmonary surfactant protein B in an endosomal/lysosomal
compartment.
Am J Physiol.
1992;
263
479-486
MissingFormLabel
- 36
Crouch E, Wright J R.
Surfactant proteins A and D and pulmonary host defense.
Annu Rev Physiol.
2001;
63
521-554
MissingFormLabel
- 37
Creuwels L AJM, Golde L MG, Haagsman H P.
The pulmonary surfactant system:biochemical and clinical aspects.
Lung.
1997;
175
1-39
MissingFormLabel
- 38
Cole F S, Hamvas van A, Nogee L M.
Genetic disorders of neonatal respiratory function.
Ped Res.
2001;
50
157-162
MissingFormLabel
- 39
Kobayashi T, Nitta K, Takahashi R et al.
Activity of pulmonary surfactant after blocking the associated proteins SP-A and SP-B.
J Appl Physiol.
1991;
71
530-536
MissingFormLabel
- 40
Korfhagen T R, Bruno M D, Ross G F et al.
Altered surfactant function and structure in SP-A gene targeted mice.
Proc Natl Acad Sci U S A.
1996;
93
9594-9599
MissingFormLabel
- 41
Van Iwaarden F, Welmers B, Verhoef J et al.
Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar
macrophages.
Am J Respir Cell Mol Biol.
1990;
2
91-98
MissingFormLabel
- 42
Levine A M, Kurak K E, Bruno M D et al.
Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection.
Am J Respir Cell Mol Biol.
1998;
19
700-708
MissingFormLabel
- 43
Hartshorn K L, Crouch E, White M R et al.
Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria.
Am J Physiol.
1998;
274
L958-L969
MissingFormLabel
- 44
Sastry K, Ezekowitz R A.
Collectins: pattern recognition molecules involved in first line host defense.
Curr Opin Immunol.
1993;
5
59-66
MissingFormLabel
- 45
Ferguson J S, Voelker D R, McCormack F X et al.
Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan
via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria
by macrophages.
J Immunol.
1999;
163
312-321
MissingFormLabel
- 46
Botas C, Poulain F, Akiyama J.
Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking
surfactant protein.
D Proc Natl Acad Sci USA.
1998;
95
11869-11874
MissingFormLabel
- 47
Wert S E, Yoshida M, LeVine A M.
Increased metalloproteinase activity, oxidant production, and emphysema in surfactant
protein D gene-inactivated mice.
Proc Natl Acad Sci USA.
2000;
23
5972-5977
MissingFormLabel
- 48
Phizackerley P J, Town M H, Newman G E.
Hydrophobic proteins of lamellated osmiophilic bodies isolated from pig lung.
Biochem J.
1979;
183
731-736
MissingFormLabel
- 49
Yu S H, Chung W, Olafson R W et al.
Characterization of the small hydrophobic proteins associated with pulmonary surfactant.
Biochim Biophys Acta.
1987;
921
437-448
MissingFormLabel
- 50
Whitsett J A, Hull W M, Ohning B et al.
Immunologic identification of a pulmonary surfactant-associated protein of molecular
weight = 6000 daltons.
Pediatr Res.
1986;
20
744-749
MissingFormLabel
- 51
Yu S H, Wallace D, Bhavnani B et al.
Effect of reconstituted pulmonary surfactant containing the 6000-dalton hydrophobic
protein on lung compliance of prematurely delivered rabbit fetuses.
Pediatr Res.
1988;
23
23-30
MissingFormLabel
- 52
Whitsett J A, Ohning B L, Ross G et al.
Hydrophobic surfactant-associated protein in whole lung surfactant and its importance
for biophysical activity in lung surfactant extracts used for replacement therapy.
Pediatr Res.
1986;
20
460-467
MissingFormLabel
- 53
Possmayer F.
A proposed nomenclature for pulmonary surfactantassociated proteins.
Am Rev Respir Dis.
1988;
138
990-998
MissingFormLabel
- 54
Hawgood S, Shiffer K.
Structures and properties of the surfactantassociated proteins.
Annu Rev Physiol.
1991;
53
375-394
MissingFormLabel
- 55
Glasser S W, Korfhagen T R, Perme C M et al.
Two SP-C genes encoding human pulmonary surfactant proteolipid.
J Biol Chem.
1988;
263
10326-10331
MissingFormLabel
- 56
Jacobs K A, Phelps D S, Steinbrink et al.
Isolation of cDNA clone encoding a high molecular weight precursor to a 6-kDa pulmonary
surfactant-associated protein.
J Biol Chem.
1987;
262
9808-9811
MissingFormLabel
- 57
Yu S H, Possmayer F.
Role of bovine pulmonary surfactant-associated proteins in the surface-active property
of phospholipid mixtures.
Biochim Biophys Acta.
1990;
1046
233-241
MissingFormLabel
- 58
Notter R H, Shapiro D L, Ohning B et al.
Biophysical activity of synthetic phospholipids combined with purified lung surfactant
6000 dalton apoprotein.
Chem Phys Lipids.
1987;
44
1-17
MissingFormLabel
- 59 Spragg R G, Gilliard N, Richman P. The adult respiratory distress syndrome: clinical aspects relevant to surfactant supplementation. In Robertson, B, Golde L MG Batenburg JJ, eds Pulmonary Surfactant: From Molecular Biology to Clinical Practice.. Amsterdam: Elsevier; 1992: 685-703
MissingFormLabel
- 60
Kobayashi van T, Nitta K, Takahashi R et al.
Activity of pulmonary surfactant after blocking the associated proteins SP-A and SP-B.
J Appl Physiol.
1991;
71
530-536
MissingFormLabel
- 61
Ridsdale R A, Palaniyar N, Possmayer F et al.
Formation of folds and vesicles by dipalmitoylphosphatidylcholine monolayers spread
in excess.
J Membr Biol.
2001;
180
21-32
MissingFormLabel
- 62
Paananen R, Sormunen R, Glumoff V et al.
Surfactant proteins A and D in Eustachian tube epithelium.
Am J Physiol Lung Cell Mol Physiol.
2001;
281
660-7
MissingFormLabel
- 63
Kim J K, Kim S S, Rha K W et al.
.
Am J Physiol Lung Cell Mol Physiol.
2007;
292
879-884
MissingFormLabel
- 64
Mo Y K, Kankavi O, Masci P P et al.
Surfactant protein expression in human skin: evidence and implications.
J Invest Dermatol.
2007;
127
381-386
MissingFormLabel
- 65
Sati L, Seval-Celik Y.
Ramazan Demir Lung surfactant proteins in the early human placenta.
Histochem Cell Biol.
DOI: 10.1007 /s00418-009-0642-9
MissingFormLabel
- 66
Bräuer L, Möschter S, Beileke S et al.
Human parotid and submandibular glands express and secrete surfactant proteins A,
B, C and D.
Histochem Cell Biol.
2009;
132 (3)
331-338
MissingFormLabel
- 67
McCulley J P, Shine W E.
Meibomian gland function and the tear lipid layer.
Ocul Surf.
2003;
1
97-106
MissingFormLabel
- 68
Gipson I K, Hori Y, Argueso P et al.
Character of ocular surface mucins and their alteration in dry eye disease.
Ocul Surf.
2004;
2
131-148
MissingFormLabel
- 69
Jumblatt M M, McKenzie R W, Steele P S et al.
MUC7 expression in the human lacrimal gland and conjunctiva.
Cornea.
2003;
22
41-45
MissingFormLabel
- 70
Paulsen F, Langer G, Hoffmann W et al.
Human lacrimal gland mucins.
Cell Tissue Res.
2004;
316
167-177
MissingFormLabel
- 71
Paulsen F.
Cell and molecular biology of human lacrimal gland and nasolacrimal duct mucins.
Int Rev Cytol.
2006;
249
229-279
MissingFormLabel
- 72
Paulsen F, Berry M.
Mucins and TFF peptides of the tear film and lacrimal apparatus.
Prog Histochem Cytochem.
2006;
41
1-53
MissingFormLabel
- 73
Madsen J, Kliem A, Tornoe I et al.
Localization of lung surfactant protein D on mucosal surfaces in human tissues.
J Immunol.
2000;
164
5866-5870
MissingFormLabel
- 74
Stahlman M T, Gray M E, Hull W M et al.
Immunolocalization of surfactant protein-D (SP-D) in human fetal, newborn, and adult
tissues.
J Histochem Cytochem.
2002;
50
651-660
MissingFormLabel
- 75
Akiyama J, Hoffman A, Brown C et al.
Tissue distribution of surfactant proteins A and D in the mouse.
J Histochem Cytochem.
2002;
50
993-996
MissingFormLabel
- 76
Ni M, Evans D J, Hawgood S et al.
Surfactant protein D is present in human tear fluid and the cornea and inhibits epithelial
cell invasion by Pseudomonas aeruginosa.
Infect Immun.
2005;
73
2147-2156
MissingFormLabel
- 77
Dobbie J W, Tasiaux N, Meijers P et al.
Lamellar bodies in synoviocytes, mesothelium and specific epithelia as possible site
of auto-antigen in rheumatoid disease.
Br J Rheumatol.
1994;
33
508-519
MissingFormLabel
- 78
Diebold Y, Calonge M, Enriquez de Salamanca A.
Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal
human conjunctiva.
Invest Ophthalmol Vis Sci.
2003;
44
4263-4274
MissingFormLabel
- 79
Araki-Sasaki K, Ohashi Y, Sasabe T.
An SV 40-immortalized human corneal epithelial cell line and its characterization.
Invest Ophthalmol Vis Sci.
1995;
36
614-621
MissingFormLabel
- 80
Heiligenhaus A, Koch J M, Kruse F E et al.
Diagnostik und Differenzierung von Benetzungsstörungen.
Ophthalmologe.
1995;
92
6-11
MissingFormLabel
- 81
Narayanan S, Miller W L, McDermott A M.
Expression of human beta-defensins in conjunctival epithelium: relevance to dry eye
disease.
Invest Ophthalmol Vis Sci.
2003;
44
3795-3801
MissingFormLabel
- 82
Sorensen G L, Madsen J, Kejling K et al.
Surfactant protein D is proatherogenic in mice.
Am J physiol Hear Circ Physiol.
2006;
290
H2286-H2294
MissingFormLabel
- 83
Bräuer L, Paulsen F.
Tear film and ocular surface surfactants.
J Epithelial Biol Pharmacol.
2008;
1
62-67
MissingFormLabel
Martin Schicht
Institut für Anatomie und Zellbiologie, Martin-Luther-Universität Halle-Wittenberg
Große Steinstraße 52
06097 Halle
Telefon: ++ 49/3 45/5 57 19 44
Fax: ++ 49/3 45/5 57 17 00
eMail: martin.schicht@medizin.uni-halle.de