Subscribe to RSS
DOI: 10.1055/s-0029-1245670
© Georg Thieme Verlag KG Stuttgart · New York
Leistungsbewertung von deutschen Krankenhäusern
Stärken, Schwächen und Vergleichbarkeit der bekannten MethodenPerformance Assessment of German HospitalsStrengths, Weaknesses and Comparability of Common MethodsPublication History
Publication Date:
30 September 2010 (online)
Zusammenfassung
Der Beitrag untersucht die Stärken und Schwächen der wichtigsten Ansätze für die Leistungsbewertung von deutschen Krankenhäusern: parametrische Kostenfunktionen, Stochastic Frontier Analysis (SFA) sowie Data Envelopment Analysis (DEA). Die Analyse legt nahe, dass sich die Eignung der verschiedenen Ansätze zur Leistungsbewertung je nach Fragestellung und Datengrundlage unterscheidet. Parametrische Durchschnittskostenansätze und SFA eignen sich insbesondere für Fragestellungen, bei denen aggregierte Outputindikatoren, wie zum Beispiel Case-Mix-adjustierte Gesamtkosten, verwendet werden oder indikationsspezifisch Krankenhauskosten und Effizienz verglichen werden. Die nichtparametrische DEA ist hingegen in der Lage, die große Vielfalt von Output und Inputkategorien in Krankenhäusern zu berücksichtigen. Sie weist allerdings Schwächen bei der Berücksichtigung von statistischen Ausreißern und stochastischen Schwankungen auf. Insgesamt ist die DEA daher insbesondere für Vergleiche von sehr ähnlichen Krankenhäusern auf Grundlage einer qualitativ hochwertigen Datenbasis geeignet. Der Beitrag verdeutlicht, dass durchschnittliche und individuelle Leistungsbewertungen von Krankenhäusern je nach Methode und Modellannahmen differieren können. Abschließend wird skizziert, wie Leistungsbewertungen trotzdem für die Formulierung von Handlungsempfehlungen genutzt werden können und welche methodischen Innovationen für die unterschiedlichen Ansätze zur Leistungsbewertung von Krankenhäusern derzeit diskutiert werden.
Abstract
We analyze the most important approaches for comparing the performance of hospitals: hospital cost functions, stochastic frontier analysis (SFA), and data envelopment analysis (DEA). Our analysis suggests that the strengths and weaknesses of these approaches differ by type of research or policy question and by the kind of data at hand. Parametric approaches including SFA are particularly useful when the research questions can be analyzed via aggregate output indicators. In addition these approaches are particularly good at analyzing hospital costs and performance in an episode specific manner. The non-parametric DEA in contrast facilitates to consider the great variety of inputs and outputs in a disaggregated form. However, for DEA results to be meaningfully interpretable, the hospitals under consideration need to be similar with regard to input and output categories as well as with regard to their production process. Furthermore, the DEA can only to a limited extent take account of the influence of exogenous environmental factors, modelling and data errors, and statistical outliers. It is therefore particularly useful when similar hospitals ought to be compared based on a high-quality data-set. Moreover, the paper illustrates that average and individual performance scores for hospital differ by type of approach selected, modeling and specification choices. We conclude the paper by outlining an approach that enables researchers and policy makers to deduct policy recommendations in the face of this uncertainty and by presenting recent methodological innovations for the outlined approaches.
Schlüsselwörter
Leistungsbewertung - Data Envelopment Analysis (DEA) - Stochastic Frontier Analysis (SFA) - Krankenhauskostenfunktionen
Key words
performance assessment - data envelopment analysis - stochastic frontier analysis - hospital cost functions
Literatur
- 1 Werblow A, Robra B P. Einsparpotenziale im medizinfernen Bereich deutscher Krankenhäuser – eine regionale Effizienzfrontanalyse. In Klauber J, Robra B P, Schellschmidt H, Hrsg Krankenhaus-Report 2006 – Schwerpunkt: Krankenhausmarkt im Umbruch. Stuttgart: Schattauer; 2007: 133-151
- 2 Werblow A, Karmann A, Robra B P. Effizienz, Wettbewerb und regionale Unterschiede in der stationären Versorgung. In Klauber J, Geraeds M, Friedrich J, Hrsg Krankenhaus-Report 2010 – Schwerpunkt: Krankenhausversorgung in der Krise?. Stuttgart: Schattauer; 2010: 41-70
- 3 Wörz M. Erlöse – Kosten – Qualität: Macht die Krankenhausträgerschaft einen Unterschied?. Wiesbaden: Verlag für Sozialwissenschaften; 2008
- 4 Helmig B, Lapsely I. On the efficiency of public, welfare and private hospitals in Germany over time: a sectoral data envelopment analysis study. Health Serv Manage Res. 2001; 14 (4) 263-274
- 5 Herr A. Cost and technical efficiency of German hospitals: does ownership matter?. Health Econ. 2008; 17 1057-1071
- 6 Tiemann O, Schreyögg J. Effects of Ownership on Hospital Efficiency in Germany. Business Research Journal. 2010; 2 (2) 115-145
- 7 Staat M. Efficiency of hospitals in Germany: a DEA-bootstrap approach. Applied Economics. 2006; 38 (19) 2255-2263
- 8 Farrell M J. The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. 1957; 120 (3) 253-290
- 9 Breyer F, Zweifel P, Kifmann M. Gesundheitsökonomie. Berlin: Springer; 2005: 355 ff.
- 10 Fetter R B, Shin Y, Freeman J L et al. Case mix definition by diagnosis-related groups. Med Care. 1980; 18 (2) 1-53
- 11 Smith P, Street A. Measuring the efficiency of public services: the limits of analysis. Journal of the Royal Statistical Society. 2005; 168 (2) 401-417
- 12 Jacobs R, Smith P, Street A. Measuring Efficiency in Health Care. Cambridge, New York: Cambridge University Press; 2006
- 13 Busse R, Schreyögg J, Smith P C. Variability in healthcare treatment costs amongst nine EU countries – results from the HealthBASKET project. Health Econ. 2008; 17 (S1) 1-8
- 14 Breyer F. The specification of a hospital cost function. A comment on the recent literature. J Health Econ. 1987; 6 (2) 147-157
- 15 Shepard R W. Theory of Cost and Production Functions. Princeton: Princeton University Press; 1970
- 16 Conrad R F, Strauss R P. A Multiple-Output, Multiple-Input Model of the Hospital Industry in North Carolina. Applied Economics. 1983; 15 (3) 341-352
- 17 Caves D W, Christensen L R, Diewert W E. The economic theory of index numbers and the measurement of input, output and productivity. Econometrica. 1980; 50 1393-1414
- 18 Smet M. Cost characteristics of hospitals. Soc Sci Med. 2002; 55 (6) 895-906
- 19 Hollingsworth B. The measurement of efficiency and productivity of health care delivery. Health Econ. 2008; 17 (10) 1107-1128
- 20 Rosko M D, Mutter R L. Stochastic frontier analysis of hospital inefficiency: a review of empirical issues and an assessment of robustness. Med Care Res Rev. 2008; 65 (2) 131-166
- 21 Street A. How much confidence should we place in efficiency estimates?. Health Econ. 2003; 12 (11) 895-907
- 22 Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units. European Journal of Operations Research. 1978; 2 429-444
- 23 Hauck K, Street A. Performance assessment in the context of multiple objectives: a multivariate multilevel analysis. J Health Econ. 2006; 25 (6) 1029-1048
-
24 Burgess J, Street A. Measuring organisational performance. In Smith P C, Glied S A, Hrsg The Oxford Handbook of Health Economics.. Oxford: Oxford University Press; im Druck
- 25 Harper J, Hauck K, Street A. Analysis of cost and efficiency in general surgery specialties in the United Kingdom. European Journal of Health Economics. 2001; 2 (4) 150-157
- 26 Smet M. Measuring performance in the presence of stochastic demand for hospital services: an analysis of Belgian general cara hospitals. Journal of Productivity Analysis. 2007; 27 13-29
- 27 Braeutigam R R, Daughety A F. On the estimation of returns to scale using variable cost functions. Economic Letters. 1983; 11 (1 – 2) 25-31
- 28 Everitt B S, Landau S, Leese M. Cluster Analysis. London: Arnold; 2001
- 29 Simar L, Wilson P W. Estimation and inference in two-stage, semi-parametric models of production processes. Discussion Paper 0307. Université Catholique Louvain: Institut de Stastique; 2004
- 30 McDonald J. Using least squares and tobit in second stage DEA efficiency analyses. European Journal of Operational Research. 2009; 136 31-64
- 31 Greene W. Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization’s panel data on national health care systems. Health Econ. 2004; 13 (10) 959-980
- 32 Malmquist S. Index numbers and indifference surfaces. Trabajos de Estatistica. 1953; 4 209-242
- 33 Pitt M M, Lee L F. The measurement and sources of technical efficiency in the Indonesian weaving industry. Journal of Development Economics. 1981; 9 43-64
- 34 Schmidt P, Sickles R C. Production frontiers and panel data. Journal of Business and Economic Studies. 1984; 2 299-326
- 35 Greene W H. The econometric approach to efficiency analysis. In Fried H O, Lovell C AK, Schmidt S S, Hrsg The measurement of productive efficiency: techniques and applications.. New York: Oxford University Press; 1993: 68-119
- 36 Battese G E, Coelli T J. Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India. The Journal of Productivity Analysis. 1992; 3 153-169
- 37 Kumbhakar S C. Production frontiers, panel data, and time-varying technical efficiency. Journal of Econometrics. 1990; 46 201-211
- 38 Olsen K R, Street A. The analysis of efficiency among a small number of organisations: how inferences can be improved by exploiting patient-level data. Health Econ. 2008; 17 (6) 671-681
- 39 Chalkley M, Malcomson J M. Government purchasing of healthservices. In Culyer A J, Newhouse J P, Hrsg Handbook of Health Economics.. New Holland: Elsevier; 2000
- 40 Hodgkin D, McGuire T G. Payment levels and hospital response to prospective payment. J Health Econ. 1994; 13 (1) 1-29
- 41 Pope G C. Hospital nonprice competition and Medicare reimbursement policy. J Health Econ. 1989; 8 (2) 147-172
- 42 Rosko M D. Cost efficiency of US hospitals: a stochastic frontier approach. Health Econ. 2001; 10 (6) 539-551
- 43 Deily M E, McKay N L. Cost inefficiency and mortality rates in Florida hospitals. Health Econ. 2006; 15 (4) 419-431
- 44 Yaisawarng S, Burgess J F. Performance-based budgeting in the public sector: an illustration from the VA health care system. Health Econ. 2006; 15 (3) 295-310
- 45 Busse R, Nimptsch U, Mansky T. Measuring, Monitoring, and Managing Quality in Germany’s Hospitals. Health Affairs. 2009; 28 (2) W294-W304
- 46 Heller G. Qualitätssicherung mit Routinedaten – Aktueller Stand und Weiterentwicklung. In Klauber J, Geraeds M, Friedrich J, Hrsg Krankenhaus-Report 2010 – Schwerpunkt: Krankenhausversorgung in der Krise?. Stuttgart: Schattauer; 2010: 239-253
- 47 Castelli A, Dawson D, Gravelle H et al. A new approach to measuring health system output and productivity. National Institute Economic Review. 2007; 200 105-117
- 48 Cutler D M, Huckman R S. Technological development and medical productivity: the diffusion of angioplasty in New York state. J Health Econ. 2003; 22 (2) 187-217
- 49 Stone M. How not to measure the efficiency of public services (and how one might). Journal of the Royal Statistical Society. 2002; Series A 165 405-34
- 50 Hadley J, Zuckerman S. The role of efficiency measurement in hospital rate setting. J Health Econ. 1994; 13 335-340
- 51 Newhouse J P. Frontier analysis: how useful a tool for health economics?. J Health Econ. 1994; 13 317-322
David Scheller-Kreinsen, MPP
Fachgebiet Management im Gesundheitswesen, Technische Universität Berlin
Straße des 17. Juni 135 (H80)
10623 Berlin
Email: David.Scheller-Kreinsen@tu-berlin.de