RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245770
© Georg Thieme Verlag KG Stuttgart · New York
Die Bedeutung des glutamatergen Systems für Pathophysiologie und Pharmakotherapie der Depression: präklinische und klinische Daten
The Role of the Glutamatergic System in Pathophysiology and Pharmacotherapy for Depression: Preclinical and Clinical DataPublikationsverlauf
Publikationsdatum:
29. November 2010 (online)

Zusammenfassung
Dem glutamatergen System wird eine zunehmende Rolle in der Pathophysiologie affektiver Störungen zugeschrieben. Der Neurotransmitter Glutamat ist der wichtigste exzitatorische Transmitter im zentralen Nervensystem. An der Regulation des glutamatergen Systems sind Gliazellen maßgeblich beteiligt. In verschiedenen Untersuchungen wurde eine Dysfunktion bzw. reduzierte Anzahl von Gliazellen bei Patienten mit depressiver Störung beschrieben. Daraus könnte sich bei der Depression eine Überfunktion des glutamatergen Systems mit einer toxisch wirkenden Akkumulation von Glutamat entwickeln. Gängige Antidepressiva greifen in den Glutamat-Metabolismus ein und antiglutamaterge Substanzen (z. B. Riluzol) und NMDA-Rezeptor-Antagonisten (z. B. Ketamin) zeigten antidepressive Wirksamkeit in hauptsächlich präklinischen und einigen klinischen Studien. Weitere Substanzen sind in Prüfung. Diese Übersicht liefert Einblicke über die neuesten Entwicklungen auf diesem Gebiet.
Abstract
An increasing significance has been attributed to the glutamatergic system in the pathophysiology of affective disorders. Glutamate is the most important excitatory neurotransmitter in the central nervous system. Glia cells are crucial regulators of the glutamatergic metabolism. Several studies have reported a dysfunction or reduced number of glia cells in patients suffering from depression. This could result in hyperfunctioning of the glutamatergic system leading to a toxic accumulation of glutamate. Commonly used antidepressants influence the glutamate metabolism and antiglutamatergic substances [e. g., riluzol] and NMDA-receptor antagonists [e. g., ketamine] have shown antidepressant properties in mostly preclinical and some clinical trials. Further substances are currently being investigated. This review provides an insight into the newest developments in this field.
Schlüsselwörter
Glutamat - Depression - NMDA Rezeptor - Ketamin - Gliazelle
Keywords
glutamate - depression - NMDA receptor - ketamine - glia cells
Literatur
- 1
Ustün T B, Ayuso-Mateos J L, Chatterji S et al.
Global burden of depressive disorders in the year 2000.
Br J Psychiatry.
2004;
184
386-392
MissingFormLabel
- 2
Paykel E S, Brugha T, Fryers T.
Size and burden of depressive disorders in Europe.
Eur Neuropsychopharmacol.
2005;
15
411-423
MissingFormLabel
- 3
Kessler R C, Chiu W T, Demler O et al.
Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National
Comorbidity Survey Replication.
Arch Gen Psychiatry.
2005;
62
617-627
MissingFormLabel
- 4
Trivedi M H, Rush A J, Wisniewski S R et al.
STAR*D Study Team. Evaluation of outcomes with citalopram for depression using measurement-based
care in STAR*D. Implications for clinical practice.
Am J Psychiatry.
2006;
163
28-40
MissingFormLabel
- 5
Thase M E.
Therapeutic alternatives for difficult-to-treat depression: a narrative review of
the state of the evidence.
CNS Spectr.
2004;
9
808-821
MissingFormLabel
- 6
DeBattista C.
Augmentation and combination strategies for depression.
J Psychopharmacol.
2006;
20
11-18
MissingFormLabel
- 7
Fava M, Rush A J.
Current status of augmentation and combination treatments for major depressive disorder:
a literature review and a proposal for a novel approach to improve practice.
Psychother Psychosom.
2006;
75
139-153
MissingFormLabel
- 8
Frieling H, Hillemacher T, Demling J H et al.
New options in the treatment of depression.
Fortschr Neurol Psychiatr.
2007;
75
641-652
Review. German
MissingFormLabel
- 9
Kugaya A, Sanacora G.
Beyond monoamines: glutamatergic function in mood disorders.
CNS Spectrom.
2005;
10
808-819
MissingFormLabel
- 10
Hashimoto K.
Emerging role of glutamate in the pathophysiology of major depressive disorder.
Brain Res Rev.
2009;
61
105-123
MissingFormLabel
- 11
Pittenger C, Sanacora G, Krystal J H.
The NMDA receptor as a therapeutic target in major depressive disorder.
CNS Neurol Disord Drug Targets.
2007;
6
101-115
MissingFormLabel
- 12
Rajkowska G, Miguel-Hidalgo J J.
Gliogenesis and glial pathology in depression.
CNS Neurol Disord Drug Targets.
2007;
6
219-233
MissingFormLabel
- 13
Mao L, Tang Q et al.
Regulation of MAPK/ERK phosphorylation via ionotropic glutamate receptors in cultured
rat striatal neurons.
Eur J Neurosci.
2004;
19
1207-1216
MissingFormLabel
- 14
Mao L, Yang L et al.
Role of protein phosphatase 2A in mGluR5-regulated MEK/ERK phosphorylation in neurons.
J Biol Chem.
2005;
280
12602-12610
MissingFormLabel
- 15
Riccio A, Ginty D D.
What a privilege to reside at the synapse: NMDA receptor signaling to CREB.
Nature Neuroscience.
2002;
5
389-390
MissingFormLabel
- 16
Chourbaji S, Brandwein C, Gass P.
Altering BDNF expression by genetics and/or environment: Impact for emotional and
depression-like behaviour in laboratory mice.
Neurosci Biobehav Rev.
2010;
[Epub ahead of print]
MissingFormLabel
- 17
Gass P, Hellweg R.
Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker for affective disorders?.
Int J Neuropsychopharmacol.
2010;
Epub 2009 Dec 9
13
1-4
MissingFormLabel
- 18
Hellweg R, Ziegenhorn A, Heuser I et al.
Serum concentrations of nerve growth factor and brain-derived neurotrophic factor
in depressed patients before and after antidepressant treatment.
Pharmacopsychiatry.
2008;
41
66-71
MissingFormLabel
- 19
Hardingham G E, Fukunaga Y, Bading H.
Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death
pathways.
Nat Neurosci.
2002;
5
405-414
MissingFormLabel
- 20
Ivanov A, Pellegrino C, Rama S et al.
Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular
signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons.
J Physiol.
2006;
572
789-798
MissingFormLabel
- 21
Hardingham G E, Fukunaga Y, Bading H.
Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death
pathways.
Nat Neurosci.
2002;
5
405-414
MissingFormLabel
- 22
Kim J S, Schmid-Burgk W, Claus D et al.
Increased serum glutamate in depressed patients.
Arch Psychiatr Nervenkr.
1982;
232
299-304
MissingFormLabel
- 23
Altamura C A, Mauri M C, Ferrara A et al.
Plasma and platelet excitatory amino acids in psychiatric disorders.
Am J Psychiatry.
1993;
150
1713-1731
MissingFormLabel
- 24
Mitani H, Shirayama Y, Yamada T et al.
Correlation between plasma levels of glutamate, alanine and serine with severity of
depression.
Prog Neuropsychopharmacol Biol Psychiatry.
2006;
30
1155-1158
MissingFormLabel
- 25
Levine J, Panchalingam K, Rapoport A et al.
Increased cerebrospinal fluid glutamine levels in depressed patients.
Biol Psychiatry.
2000;
47
586-593
MissingFormLabel
- 26
Maes M, Verkerk R, Vandoolaeghe E et al.
Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine,
alanine and arginine in treatment-resistant depression: modulation by treatment with
antidepressants and prediction of clinical responsivity.
Acta Psychiatr Scand.
1998;
97
302-308
MissingFormLabel
- 27
Hashimoto K, Sawa A, Iyo M.
Increased levels of glutamate in brains from patients with mood disorders.
Biol Psychiatry.
2007;
62
1310-1316
MissingFormLabel
- 28
Francis P T, Poynton A, Lowe S L et al.
Brain amino acid concentrations and Ca2 + -dependent release in intractable depression
assessed antemortem.
Brain Res.
1989;
494
315-324
MissingFormLabel
- 29
Law A J, Deakin J F.
Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses.
NeuroReport.
2001;
12
2971-2974
MissingFormLabel
- 30
Nudmamud-Thanoi S, Reynolds G P.
The NR 1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in
schizophrenia and affective disorders.
Neurosci Lett.
2004;
372
173-177
MissingFormLabel
- 31
Beneyto M, Kristiansen L V, Oni-Orisan A et al.
Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia
and mood disorders.
Neuropsychopharmacology.
2007;
32
1888-1902
MissingFormLabel
- 32
Feyissa A M, Chandran A, Stockmeier C A et al.
Reduced levels of NR 2A and NR 2B subunits of NMDA receptor and PSD-95 in the prefrontal
cortex in major depression.
Prog Neuropsychopharmacol Biol Psychiatry.
2009;
33
70-75
MissingFormLabel
- 33
Karolewicz B, Feyissa A M, Chandran A et al.
Glutamate receptors expression in postmortem brain from depressed subjects.
Biol Psychiatry.
2009;
65
177
MissingFormLabel
- 34
Hasler G.
Abnormal prefrontal glutamatergic and GABAeric systems in mood and anxiety disorders.
Biol Psychiatry.
2009;
65
176-177
MissingFormLabel
- 35
Karolewicz B, Stockmeier C A, Ordway G A et al.
Elevated levels of the NR 2C subunit of the NMDA receptor in the locus coeruleus in
depression.
Neuropsychopharmacol.
2005;
30
1557-1567
MissingFormLabel
- 36
Meador-Woodruff J H, Hogg Jr A J, Smith R E.
Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder,
and major depressive disorder.
Brain Res Bull.
2001;
55
631-640
MissingFormLabel
- 37
Choudary P V, Molnar M, Evans S J et al.
Altered cortical glutamatergic and GABAergic signal transmission with glial involvement
in depression.
Proc Natl Acad Sci USA.
2005;
102
15653-15658
MissingFormLabel
- 38
Sanacora G, Gueorguieva R, Epperson C N et al.
Subtype-specific alterations of -aminobutyric acid and glutamate in patients with
major depression.
Arch Gen Psychiatry.
2004;
61
705-713
MissingFormLabel
- 39
Auer D P, Putz B, Kraft E et al.
Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton
magnetic resonance spectroscopy study.
Biol Psychiatry.
2000;
47
305-313
MissingFormLabel
- 40
Ajilore O, Haroon E, Kumaran S et al.
Measurement of brain metabolites in patients with type 2 diabetes and major depression
using proton magnetic resonance spectroscopy.
Neuropsychopharmacology.
2007;
32
1224-1231
MissingFormLabel
- 41
Hasler G, Veen J W, Tumonis van der T et al.
Reduced prefrontal glutamate/glutamine and -aminobutyric acid levels in major depression
determined using proton magnetic resonance spectroscopy.
Arch Gen Psychiatry.
2007;
64
193-200
MissingFormLabel
- 42
Block W, Träber F, Widdern von O et al.
Proton MR spectroscopy of the hippocampus at 3T in patients with unipolar major depressive
disorder: correlates and predictors of treatment responses.
Int J Neuropsychopharmacol.
2009;
12
415-422
MissingFormLabel
- 43
Kendler K S, Kuhn J, Prescott C A.
The interrelationship of neuroticism, sex, and stressful life events in the prediction
of episodes of major depression.
Am J Psychiatry.
2004;
161
631-636
MissingFormLabel
- 44
Sapolsky R M.
The possibility of neurotoxicity in the hippocampus in major depression: a primer
on neuron death.
Biol Psychiatry.
2000;
48
755-765
MissingFormLabel
- 45
Moghaddam B.
Stress activation of glutamate neurotransmission in the prefrontal cortex: implications
for dopamine-associated psychiatric disorders.
Biol Psychiatry.
2002;
51
775-787
MissingFormLabel
- 46
Bagley J, Moghaddam B.
Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus
following repeated stress: effects of pretreatment with saline or diazepam.
Neuroscience.
1997;
77
65-73
MissingFormLabel
- 47
Banasr M, Valentine G W, Li X Y et al.
Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of
the adult rat.
Biol Psychiatry.
2007;
62
496-504
MissingFormLabel
- 48
Czeh B, Lucassen P J.
What causes the hippocampal volume decrease in depression? Are neurogenesis, glial
changes and apoptosis implicated?.
Eur Arch Psychiatry Clin Neurosci.
2007;
257
250-60
MissingFormLabel
- 49
Czeh B, Muller-Keuker J I, Rygula R et al.
Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex:
hemispheric asymmetry and reversal by fluoxetine treatment.
Neuropsychopharmacology.
2007;
32
1490-1503
MissingFormLabel
- 50
Nowak G, Trullas R, Layer R T et al.
Adaptive changes in the N-methyl-D-aspartate receptor complex after chronic treatment
with imipramine and 1-aminocyclopropanecarboxylic acid.
J Pharmacol Exp Ther.
1993;
265
1380-1386
MissingFormLabel
- 51
Nowak G, Li Y, Paul I A.
Adaptation of cortical but not hippocampal NMDA receptors after chronic citalopram
treatment.
Eur J Pharmacol.
1996;
295
75-85
MissingFormLabel
- 52
Nowak G, Legutko B, Skolnick P et al.
Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin
reuptake inhibitors.
Eur J Pharmacol.
1998;
342
367-370
MissingFormLabel
- 53
Paul I A, Nowak G, Layer R T et al.
Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant
treatments.
J Pharmacol Exp Ther.
1994;
269
95-102
MissingFormLabel
- 54
Skolnick P, Layer R T, Popik P et al.
Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment:
implications for the pharmacotherapy of depression.
Pharmacopsychiatry.
1996;
29
23-26
MissingFormLabel
- 55
Boyer P A, Skolnick P, Fossom L H.
Chronic administration of imipramine and citalopram alters the expression of NMDA
receptor subunit mRNAs in mouse brain.
J Mol Neurosci.
1998;
10
219-233
MissingFormLabel
- 56
Michael-Titus A T, Bains S, Jeetle J et al.
Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex – a
possible mechanism of neuroprotection in major depression?.
Neuroscience.
2000;
100
681-684
MissingFormLabel
- 57
Tokarski K, Bobula B, Wabno J et al.
Repeated administration of imipramine attenuates glutamatergic transmission in rat
frontal cortex.
Neuroscience.
2008;
153
789-795
MissingFormLabel
- 58
Golembiowska K, Dziubina A.
Effect of acute and chronic administration of citalopram on glutamate and aspartate
release in the rat prefrontal cortex.
Pol J Pharmacol.
2000;
52
441-448
MissingFormLabel
- 59
Sernagor E, Kuhn D, Vyklicky Jr L et al.
Open channel block of NMDA receptor responses evoked by tricyclic antidepressants.
Neuron.
1989;
2
1221-1227
MissingFormLabel
- 60
Cai Z, McCaslin P P.
Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used
therapeutically, reduce kainate- and Nmethyl- D-aspartate-induced intracellular Ca2
+ levels in neuronal culture.
Eur J Pharmacol.
1992;
219
53-57
MissingFormLabel
- 61
Watanabe Y, Saito H, Abe K.
Tricyclic antidepressants block NMDA receptor-mediated synaptic responses and induction
of long-term potentiation in rat hippocampal slices.
Neuropharmacology.
1993;
32
479-486
MissingFormLabel
- 62
Takebayashi M, Kagaya A, Inagaki M et al.
Effects of antidepressants on gamma-aminobutyric acid- and N-methyl-D-aspartate-induced
intracellular Ca(2 + ) concentration increases in primary cultured rat cortical neurons.
Neuropsychobiology.
2000;
42
120-126
MissingFormLabel
- 63
Bonanno G, Giambelli R, Raiteri L et al.
Chronic antidepressants reduce depolarization-evoked glutamate release and protein
interactions favoring formation of SNARE complex in hippocampus.
J Neurosci.
2005;
25
3270-3279
MissingFormLabel
- 64
Szasz B K, Mike A, Karoly R et al.
Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central
nervous system.
Biol Psychiatry.
2007;
62
1303-1309
MissingFormLabel
- 65
Mayer A, Szasz B K, Kiss J P.
Inhibitory effect of antidepressants on the NMDA-evoked ([3] H)noradrenaline release
from rat hippocampal slices.
Neurochem Int.
2009;
55
383-388
MissingFormLabel
- 66
Svenningsson P, Tzavara E T, Witkin J M et al.
Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects
of fluoxetine (Prozac).
Proc Natl Acad Sci USA.
2002;
99
3182-3187
MissingFormLabel
- 67
Svenningsson P, Bateup H, Qi H et al.
Involvement of AMPA receptor phosphorylation in antidepressant actions with special
reference to tianeptine.
Eur J Neurosci.
2007;
26
3509-3517
MissingFormLabel
- 68
Du J, Suzuki K, Wei Y et al.
The Anticonvulsants lamotrigine, riluzole and valproate differentially regulate AMPA
receptor membrane localization: relationship to clinical effects in mood disorders.
Neuropsychopharmacology.
2007;
32
793-802
MissingFormLabel
- 69
Martinez-Turrillas R, Frechilla D, De lRio J.
Chronic antidepressant treatment increases the membrane expression of AMPA receptors
in rat hippocampus.
Neuropharmacology.
2002;
43
1230-1237
MissingFormLabel
- 70
Barbon A, Popoli M, La V ia L et al.
Regulation of editing and expression of glutamate alpha-amino-propionic-acid [AMPA]/kainate
receptors by antidepressant drugs.
Biol Psychiatry.
2006;
59
713-720
MissingFormLabel
- 71
Bobula B, Tokarski K, Hess G.
Repeated administration of antidepressants decreases field potenzials in rat frontal
cortex.
Neuroscience.
2003;
120
765-769
MissingFormLabel
- 72
Bobula B, Hess G.
Antidepressant treatments-induced modifications of glutamatergic transmission in rat
frontal cortex.
Pharmacol Rep.
2008;
60
865-871
MissingFormLabel
- 73
Dixon J F, Hokin L E.
Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake
by presynaptic nerve endings in mouse cerebral cortex.
Proc Natl Acad Sci USA.
1998;
95
8363-8368
MissingFormLabel
- 74
Greenhill S D, Jones R S.
Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to
excitation and decrease neuronal excitability in neurones of the rat entorhinal cortex
in vitro.
Neuroscience.
2010;
167
456-474
MissingFormLabel
- 75
Trullas R, Skolnick P.
Functional antagonists at the NMDA receptor complex exhibit antidepressant actions.
Eur J Pharmacol.
1990;
185
1-10
MissingFormLabel
- 76
Kos T, Legutko B, Danysz W et al.
Enhancement of antidepressant-like effects but not brain-derived neurotrophic factor
mRNA expression by the novel N-methyl-D-aspartate receptor antagonist neramexane in
mice.
J Pharmacol Exp Ther.
2006;
318
1128-1136
MissingFormLabel
- 77
Chaturvedi H K, Bapna J S, Chandra D.
Effect of fluvoxamine and N-methyl-Daspartate receptor antagonists on shock-induced
depression in mice.
Indian J Physiol Pharmacol.
2001;
45
199-207
MissingFormLabel
- 78
Yilmaz A, Schulz D, Aksoy A et al.
Prolonged effect of an anesthetic dose of ketamine on behavioral despair.
Pharmacol Biochem Behav.
2002;
71
341-344
MissingFormLabel
- 79
Maeng S, Zarate Jr C A, Du J et al.
Cellular mechanisms underlying the antidepressant effects of ketamine: role of &alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid receptors.
Biol Psychiatry.
2008;
63
349-352
MissingFormLabel
- 80
Garcia L S, Comim C M, Valvassori S S et al.
Chronic administration of ketamine elicits antidepressant-like effects in rats without
affecting hippocampal brain-derived neurotrophic factor protein levels.
Basic Clin Pharmacol Toxicol.
2008;
103
502-506
MissingFormLabel
- 81
Garcia L S, Comim C M, Valvassori S S et al.
Acute administration of ketamine induces antidepressant-like effects in the forced
swimming test and increases BDNF levels in the rat hippocampus.
Prog Neuropsychopharmacol Biol Psychiatry.
2008;
32
140-144
MissingFormLabel
- 82
Engin E, Treit D, Dickson C T.
Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological
animal models.
Neuroscience.
2009;
161
359-369
Erratum in: Neuroscience 2009; 162: 1438 – 1439
MissingFormLabel
- 83
Kos T, Popik P, Pietraszek M et al.
Effect of 5-HT3 receptor antagonist MDL 72 222 on behaviors induced by ketamine in
rats and mice.
Eur Neuropsychopharmacol.
2006;
16
297-310
MissingFormLabel
- 84
Maj J, Rogóz Z.
Synergistic effect of amantadine and imipramine in the forced swimming test.
Pol J Pharmacol.
2000;
52
111-114
MissingFormLabel
- 85
Almeida R C, Souza D G, Soletti R C et al.
Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like
effect of memantine in mice.
Neurosci Lett.
2006;
395
93-97
MissingFormLabel
- 86
Rogoz Z, Skuza G, Maj J et al.
Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs
in the forced swimming test in rats.
Neuropharmacology.
2002;
42
1024-1030
MissingFormLabel
- 87
Banasr M, Chowdhury G M, Terwilliger R et al.
Glial pathology in an animal model of depression: reversal of stress-induced cellular,
metabolic and behavioural deficits by the glutamate-modulating drug riluzole.
Mol Psychiatry.
2008;
[Epub ahead of print]
MissingFormLabel
- 88
Alt A, Witkin J M, Bleakman D.
A role for AMPA receptors in mood disorders.
Curr Pharm Des.
2005;
11
1511-1527
MissingFormLabel
- 89
Bleakman D, Alt A, Witkin J M.
AMPA receptors in the therapeutic management of depression.
CNS Neurol Disord Drug Targets.
2007;
6
117-126
MissingFormLabel
- 90
O’Neill M J, Witkin J M.
AMPA receptor potentiators: application for depression and Parkinson’s disease.
Curr Drug Targets.
2007;
8
603-620
MissingFormLabel
- 91
Chourbaji S, Vogt M A, Fumagalli F et al.
AMPA receptor subunit 1 [GluR-A] knockout mice model the glutamate hypothesis of depression.
FASEB J.
2008;
22
3129-3134
MissingFormLabel
- 92
Belozertseva V, Kos T, Popik P et al.
Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim
and the mouse tail suspension tests.
Eur Neuropsychopharmacol.
2007;
17
172-179
MissingFormLabel
- 93
Li X, Need A B, Baez M et al.
Metabotropic glutamate 5 receptor antagonism is associated with antidepressant-like
effects in mice.
J Pharmacol Exp Ther.
2006;
319
254-259
MissingFormLabel
- 94
Chaki S, Yoshikawa R, Hirota S et al.
MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist
with antidepressant-like activity.
Neuropharmacology.
2004;
46
457-467
MissingFormLabel
- 95
Bespalov A Y, Gaalen M M, Sukhotina I A et al.
Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341 495,
in animal models of anxiety and depression.
Eur J Pharmacol.
2008;
592
96-102
MissingFormLabel
- 96
Pałucha van A, Tatarczyńska E, Brański P et al.
Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects
after central administration in rats.
Neuropharmacology.
2004;
46
151-159
MissingFormLabel
- 97
Palucha A, Klak K, Branski P et al.
Activation of the mGlu7 receptor elicits antidepressant-like effects in mice.
Psychopharmacology.
2007;
194
555-562
MissingFormLabel
- 98
Cryan J F, Holmes A.
The ascent of mouse: advances in modelling human depression and anxiety.
Nat Rev Drug Discov.
2005;
4
775-790
MissingFormLabel
- 99
Benoit E, Escande D.
Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre.
Pflugers Arch.
1991;
419
603-609
MissingFormLabel
- 100
Zarate Jr C A, Payne J L, Quiroz J et al.
An open-label trial of riluzole in patients with treatment-resistant major depression.
Am J Psychiatry.
2004;
161
171-174
MissingFormLabel
- 101
Sanacora G, Kendell S F, Fenton L et al.
Riluzole augmentation for treatment-resistant depression.
Am J Psychiatry.
2004;
161
2132
MissingFormLabel
- 102
Zarate Jr C A, Quiroz J A, Singh J B et al.
An open-label trial of the glutamate-modulating agent riluzole in combination with
lithium for the treatment of bipolar depression.
Biol Psychiatry.
2005;
57
430-432
MissingFormLabel
- 103
Mathew S J, Amiel J M, Coplan J D et al.
Open-label trial of riluzole in generalized anxiety disorder.
Am J Psychiatry.
2005;
162
2379-2381
MissingFormLabel
- 104
Mathew S J, Murrough J W, aan het Rot M et al.
Riluzole for relapse prevention following intravenous ketamine in treatment-resistant
depression: a pilot randomized, placebo-controlled continuation trial.
Int J Neuropsychopharmacol.
2010;
13
71-82
MissingFormLabel
- 105
Ferguson J M, Shingleton R N.
An open-label, flexible-dose study of memantine in major depressive disorder.
Clin Neuropharmacol.
2007;
30
136-144
MissingFormLabel
- 106
Zarate Jr C A, Singh J B, Quiroz J A et al.
A double-blind, placebo-controlled study of memantine in the treatment of major depression.
Am J Psychiatry.
2006;
163
153-155
MissingFormLabel
- 107
Muhonen L H, Lönnqvist J, Juva K et al.
Double-blind, randomized comparison of memantine and escitalopram for the treatment
of major depressive disorder comorbid with alcohol dependence.
J Clin Psychiatry.
2008;
69
392-399
MissingFormLabel
- 108
Berman R M, Cappiello A, Anand A et al.
Antidepressant effects of ketamine in depressed patients.
Biol Psychiatry.
2000;
47
351-354
MissingFormLabel
- 109
Zarate Jr C A, Singh J B, Carlson P J et al.
A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major
depression.
Arch Gen Psychiatry.
2006;
63
856-864
MissingFormLabel
- 110
Paslakis G, Gilles M, Meyer-Lindenberg A et al.
Oral Administration of the NMDA Receptor Antagonist S-Ketamine as Add-On Therapy of
Depression: A Case Series.
Pharmacopsychiatry.
2010;
43
33-35
MissingFormLabel
- 111
Salvadore G, Cornwell B R, Colon-Rosario V et al.
Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological
biomarker that predicts rapid antidepressant response to ketamine.
Biol Psychiatry.
2009;
65
289-295
MissingFormLabel
- 112 Kinsler R, Duman R S. Acute ketamine administration increases VEGF expression in the hippocampus: potenzial
role in the rapid antidepressant effects of ketamine. Abstract of Society for Neuroscience Meeting at Washington DC 2008 ; #56.14
MissingFormLabel
- 113
Warner-Schmidt J L, Duman R S.
VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants.
Proc Natl Acad Sci USA.
2007;
104
4647-4652
MissingFormLabel
- 114
Machado-Vieira R, Yuan P, Brutsche N et al.
Brain-derived neurotrophic factor and initial antidepressant response to an N-methyl-D-aspartate
antagonist.
J Clin Psychiatry.
2009;
; [Epub ahead of print]
MissingFormLabel
- 115
Stahl S M.
The sigma enigma: can sigma receptors provide a novel target for disorders of mood
and cognition?.
J Clin Psychiatry.
2008;
69
1673-1674
MissingFormLabel
- 116
Borza I, Domány G.
NR2B selective NMDA antagonists: the evolution of the ifenprodil-type pharmacophore.
Curr Top Med Chem.
2006;
6
687-695
MissingFormLabel
- 117
Inta D, Trusel M, Riva M A et al.
Differential c-Fos induction by different NMDA receptor antagonists with antidepressant
efficacy: potenzial clinical implications.
Int J Neuropsychopharmacol.
2009;
12
1133-1136
MissingFormLabel
- 118
Preskorn S H, Baker B, Kolluri S et al.
An innovative design to establish proof of concept of the antidepressant effects of
the NR 2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients
with treatment-refractory major depressive disorder.
J Clin Psychopharmacol.
2008;
28
631-637
MissingFormLabel
- 119
Mineur Y S, Picciotto M R, Sanacora G.
Antidepressant-like effects of ceftriaxone in male C 57BL/ 6J mice.
Biol Psychiatry.
2007;
61
250-252
MissingFormLabel
- 120
Rothstein J D, Patel S, Regan M R et al.
β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression.
Nature.
2005;
433
73-77
MissingFormLabel
- 121
Berk M, Copolov D L, Dean O et al.
N-acetyl cysteine for depressive symptoms in bipolar disorder – a double-blind randomized
placebo-controlled trial.
Biol Psychiatry.
2008;
64
468-475
MissingFormLabel
Dr. Georgios Paslakis
Klinik für Psychiatrie und Psychotherapie
Zentralinstitut für Seelische Gesundheit
J5
68159 Mannheim
eMail: Georgios.Paslakis@zi-mannheim.de