RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245770
© Georg Thieme Verlag KG Stuttgart · New York
Die Bedeutung des glutamatergen Systems für Pathophysiologie und Pharmakotherapie der Depression: präklinische und klinische Daten
The Role of the Glutamatergic System in Pathophysiology and Pharmacotherapy for Depression: Preclinical and Clinical DataPublikationsverlauf
Publikationsdatum:
29. November 2010 (online)

Zusammenfassung
Dem glutamatergen System wird eine zunehmende Rolle in der Pathophysiologie affektiver Störungen zugeschrieben. Der Neurotransmitter Glutamat ist der wichtigste exzitatorische Transmitter im zentralen Nervensystem. An der Regulation des glutamatergen Systems sind Gliazellen maßgeblich beteiligt. In verschiedenen Untersuchungen wurde eine Dysfunktion bzw. reduzierte Anzahl von Gliazellen bei Patienten mit depressiver Störung beschrieben. Daraus könnte sich bei der Depression eine Überfunktion des glutamatergen Systems mit einer toxisch wirkenden Akkumulation von Glutamat entwickeln. Gängige Antidepressiva greifen in den Glutamat-Metabolismus ein und antiglutamaterge Substanzen (z. B. Riluzol) und NMDA-Rezeptor-Antagonisten (z. B. Ketamin) zeigten antidepressive Wirksamkeit in hauptsächlich präklinischen und einigen klinischen Studien. Weitere Substanzen sind in Prüfung. Diese Übersicht liefert Einblicke über die neuesten Entwicklungen auf diesem Gebiet.
Abstract
An increasing significance has been attributed to the glutamatergic system in the pathophysiology of affective disorders. Glutamate is the most important excitatory neurotransmitter in the central nervous system. Glia cells are crucial regulators of the glutamatergic metabolism. Several studies have reported a dysfunction or reduced number of glia cells in patients suffering from depression. This could result in hyperfunctioning of the glutamatergic system leading to a toxic accumulation of glutamate. Commonly used antidepressants influence the glutamate metabolism and antiglutamatergic substances [e. g., riluzol] and NMDA-receptor antagonists [e. g., ketamine] have shown antidepressant properties in mostly preclinical and some clinical trials. Further substances are currently being investigated. This review provides an insight into the newest developments in this field.
Schlüsselwörter
Glutamat - Depression - NMDA Rezeptor - Ketamin - Gliazelle
Keywords
glutamate - depression - NMDA receptor - ketamine - glia cells
Literatur
- 1
Ustün T B, Ayuso-Mateos J L, Chatterji S et al.
Global burden of depressive disorders in the year 2000.
Br J Psychiatry.
2004;
184
386-392
Reference Ris Wihthout Link
- 2
Paykel E S, Brugha T, Fryers T.
Size and burden of depressive disorders in Europe.
Eur Neuropsychopharmacol.
2005;
15
411-423
Reference Ris Wihthout Link
- 3
Kessler R C, Chiu W T, Demler O et al.
Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National
Comorbidity Survey Replication.
Arch Gen Psychiatry.
2005;
62
617-627
Reference Ris Wihthout Link
- 4
Trivedi M H, Rush A J, Wisniewski S R et al.
STAR*D Study Team. Evaluation of outcomes with citalopram for depression using measurement-based
care in STAR*D. Implications for clinical practice.
Am J Psychiatry.
2006;
163
28-40
Reference Ris Wihthout Link
- 5
Thase M E.
Therapeutic alternatives for difficult-to-treat depression: a narrative review of
the state of the evidence.
CNS Spectr.
2004;
9
808-821
Reference Ris Wihthout Link
- 6
DeBattista C.
Augmentation and combination strategies for depression.
J Psychopharmacol.
2006;
20
11-18
Reference Ris Wihthout Link
- 7
Fava M, Rush A J.
Current status of augmentation and combination treatments for major depressive disorder:
a literature review and a proposal for a novel approach to improve practice.
Psychother Psychosom.
2006;
75
139-153
Reference Ris Wihthout Link
- 8
Frieling H, Hillemacher T, Demling J H et al.
New options in the treatment of depression.
Fortschr Neurol Psychiatr.
2007;
75
641-652
Review. German
Reference Ris Wihthout Link
- 9
Kugaya A, Sanacora G.
Beyond monoamines: glutamatergic function in mood disorders.
CNS Spectrom.
2005;
10
808-819
Reference Ris Wihthout Link
- 10
Hashimoto K.
Emerging role of glutamate in the pathophysiology of major depressive disorder.
Brain Res Rev.
2009;
61
105-123
Reference Ris Wihthout Link
- 11
Pittenger C, Sanacora G, Krystal J H.
The NMDA receptor as a therapeutic target in major depressive disorder.
CNS Neurol Disord Drug Targets.
2007;
6
101-115
Reference Ris Wihthout Link
- 12
Rajkowska G, Miguel-Hidalgo J J.
Gliogenesis and glial pathology in depression.
CNS Neurol Disord Drug Targets.
2007;
6
219-233
Reference Ris Wihthout Link
- 13
Mao L, Tang Q et al.
Regulation of MAPK/ERK phosphorylation via ionotropic glutamate receptors in cultured
rat striatal neurons.
Eur J Neurosci.
2004;
19
1207-1216
Reference Ris Wihthout Link
- 14
Mao L, Yang L et al.
Role of protein phosphatase 2A in mGluR5-regulated MEK/ERK phosphorylation in neurons.
J Biol Chem.
2005;
280
12602-12610
Reference Ris Wihthout Link
- 15
Riccio A, Ginty D D.
What a privilege to reside at the synapse: NMDA receptor signaling to CREB.
Nature Neuroscience.
2002;
5
389-390
Reference Ris Wihthout Link
- 16
Chourbaji S, Brandwein C, Gass P.
Altering BDNF expression by genetics and/or environment: Impact for emotional and
depression-like behaviour in laboratory mice.
Neurosci Biobehav Rev.
2010;
[Epub ahead of print]
Reference Ris Wihthout Link
- 17
Gass P, Hellweg R.
Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker for affective disorders?.
Int J Neuropsychopharmacol.
2010;
Epub 2009 Dec 9
13
1-4
Reference Ris Wihthout Link
- 18
Hellweg R, Ziegenhorn A, Heuser I et al.
Serum concentrations of nerve growth factor and brain-derived neurotrophic factor
in depressed patients before and after antidepressant treatment.
Pharmacopsychiatry.
2008;
41
66-71
Reference Ris Wihthout Link
- 19
Hardingham G E, Fukunaga Y, Bading H.
Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death
pathways.
Nat Neurosci.
2002;
5
405-414
Reference Ris Wihthout Link
- 20
Ivanov A, Pellegrino C, Rama S et al.
Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular
signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons.
J Physiol.
2006;
572
789-798
Reference Ris Wihthout Link
- 21
Hardingham G E, Fukunaga Y, Bading H.
Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death
pathways.
Nat Neurosci.
2002;
5
405-414
Reference Ris Wihthout Link
- 22
Kim J S, Schmid-Burgk W, Claus D et al.
Increased serum glutamate in depressed patients.
Arch Psychiatr Nervenkr.
1982;
232
299-304
Reference Ris Wihthout Link
- 23
Altamura C A, Mauri M C, Ferrara A et al.
Plasma and platelet excitatory amino acids in psychiatric disorders.
Am J Psychiatry.
1993;
150
1713-1731
Reference Ris Wihthout Link
- 24
Mitani H, Shirayama Y, Yamada T et al.
Correlation between plasma levels of glutamate, alanine and serine with severity of
depression.
Prog Neuropsychopharmacol Biol Psychiatry.
2006;
30
1155-1158
Reference Ris Wihthout Link
- 25
Levine J, Panchalingam K, Rapoport A et al.
Increased cerebrospinal fluid glutamine levels in depressed patients.
Biol Psychiatry.
2000;
47
586-593
Reference Ris Wihthout Link
- 26
Maes M, Verkerk R, Vandoolaeghe E et al.
Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine,
alanine and arginine in treatment-resistant depression: modulation by treatment with
antidepressants and prediction of clinical responsivity.
Acta Psychiatr Scand.
1998;
97
302-308
Reference Ris Wihthout Link
- 27
Hashimoto K, Sawa A, Iyo M.
Increased levels of glutamate in brains from patients with mood disorders.
Biol Psychiatry.
2007;
62
1310-1316
Reference Ris Wihthout Link
- 28
Francis P T, Poynton A, Lowe S L et al.
Brain amino acid concentrations and Ca2 + -dependent release in intractable depression
assessed antemortem.
Brain Res.
1989;
494
315-324
Reference Ris Wihthout Link
- 29
Law A J, Deakin J F.
Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses.
NeuroReport.
2001;
12
2971-2974
Reference Ris Wihthout Link
- 30
Nudmamud-Thanoi S, Reynolds G P.
The NR 1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in
schizophrenia and affective disorders.
Neurosci Lett.
2004;
372
173-177
Reference Ris Wihthout Link
- 31
Beneyto M, Kristiansen L V, Oni-Orisan A et al.
Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia
and mood disorders.
Neuropsychopharmacology.
2007;
32
1888-1902
Reference Ris Wihthout Link
- 32
Feyissa A M, Chandran A, Stockmeier C A et al.
Reduced levels of NR 2A and NR 2B subunits of NMDA receptor and PSD-95 in the prefrontal
cortex in major depression.
Prog Neuropsychopharmacol Biol Psychiatry.
2009;
33
70-75
Reference Ris Wihthout Link
- 33
Karolewicz B, Feyissa A M, Chandran A et al.
Glutamate receptors expression in postmortem brain from depressed subjects.
Biol Psychiatry.
2009;
65
177
Reference Ris Wihthout Link
- 34
Hasler G.
Abnormal prefrontal glutamatergic and GABAeric systems in mood and anxiety disorders.
Biol Psychiatry.
2009;
65
176-177
Reference Ris Wihthout Link
- 35
Karolewicz B, Stockmeier C A, Ordway G A et al.
Elevated levels of the NR 2C subunit of the NMDA receptor in the locus coeruleus in
depression.
Neuropsychopharmacol.
2005;
30
1557-1567
Reference Ris Wihthout Link
- 36
Meador-Woodruff J H, Hogg Jr A J, Smith R E.
Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder,
and major depressive disorder.
Brain Res Bull.
2001;
55
631-640
Reference Ris Wihthout Link
- 37
Choudary P V, Molnar M, Evans S J et al.
Altered cortical glutamatergic and GABAergic signal transmission with glial involvement
in depression.
Proc Natl Acad Sci USA.
2005;
102
15653-15658
Reference Ris Wihthout Link
- 38
Sanacora G, Gueorguieva R, Epperson C N et al.
Subtype-specific alterations of -aminobutyric acid and glutamate in patients with
major depression.
Arch Gen Psychiatry.
2004;
61
705-713
Reference Ris Wihthout Link
- 39
Auer D P, Putz B, Kraft E et al.
Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton
magnetic resonance spectroscopy study.
Biol Psychiatry.
2000;
47
305-313
Reference Ris Wihthout Link
- 40
Ajilore O, Haroon E, Kumaran S et al.
Measurement of brain metabolites in patients with type 2 diabetes and major depression
using proton magnetic resonance spectroscopy.
Neuropsychopharmacology.
2007;
32
1224-1231
Reference Ris Wihthout Link
- 41
Hasler G, Veen J W, Tumonis van der T et al.
Reduced prefrontal glutamate/glutamine and -aminobutyric acid levels in major depression
determined using proton magnetic resonance spectroscopy.
Arch Gen Psychiatry.
2007;
64
193-200
Reference Ris Wihthout Link
- 42
Block W, Träber F, Widdern von O et al.
Proton MR spectroscopy of the hippocampus at 3T in patients with unipolar major depressive
disorder: correlates and predictors of treatment responses.
Int J Neuropsychopharmacol.
2009;
12
415-422
Reference Ris Wihthout Link
- 43
Kendler K S, Kuhn J, Prescott C A.
The interrelationship of neuroticism, sex, and stressful life events in the prediction
of episodes of major depression.
Am J Psychiatry.
2004;
161
631-636
Reference Ris Wihthout Link
- 44
Sapolsky R M.
The possibility of neurotoxicity in the hippocampus in major depression: a primer
on neuron death.
Biol Psychiatry.
2000;
48
755-765
Reference Ris Wihthout Link
- 45
Moghaddam B.
Stress activation of glutamate neurotransmission in the prefrontal cortex: implications
for dopamine-associated psychiatric disorders.
Biol Psychiatry.
2002;
51
775-787
Reference Ris Wihthout Link
- 46
Bagley J, Moghaddam B.
Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus
following repeated stress: effects of pretreatment with saline or diazepam.
Neuroscience.
1997;
77
65-73
Reference Ris Wihthout Link
- 47
Banasr M, Valentine G W, Li X Y et al.
Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of
the adult rat.
Biol Psychiatry.
2007;
62
496-504
Reference Ris Wihthout Link
- 48
Czeh B, Lucassen P J.
What causes the hippocampal volume decrease in depression? Are neurogenesis, glial
changes and apoptosis implicated?.
Eur Arch Psychiatry Clin Neurosci.
2007;
257
250-60
Reference Ris Wihthout Link
- 49
Czeh B, Muller-Keuker J I, Rygula R et al.
Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex:
hemispheric asymmetry and reversal by fluoxetine treatment.
Neuropsychopharmacology.
2007;
32
1490-1503
Reference Ris Wihthout Link
- 50
Nowak G, Trullas R, Layer R T et al.
Adaptive changes in the N-methyl-D-aspartate receptor complex after chronic treatment
with imipramine and 1-aminocyclopropanecarboxylic acid.
J Pharmacol Exp Ther.
1993;
265
1380-1386
Reference Ris Wihthout Link
- 51
Nowak G, Li Y, Paul I A.
Adaptation of cortical but not hippocampal NMDA receptors after chronic citalopram
treatment.
Eur J Pharmacol.
1996;
295
75-85
Reference Ris Wihthout Link
- 52
Nowak G, Legutko B, Skolnick P et al.
Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin
reuptake inhibitors.
Eur J Pharmacol.
1998;
342
367-370
Reference Ris Wihthout Link
- 53
Paul I A, Nowak G, Layer R T et al.
Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant
treatments.
J Pharmacol Exp Ther.
1994;
269
95-102
Reference Ris Wihthout Link
- 54
Skolnick P, Layer R T, Popik P et al.
Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment:
implications for the pharmacotherapy of depression.
Pharmacopsychiatry.
1996;
29
23-26
Reference Ris Wihthout Link
- 55
Boyer P A, Skolnick P, Fossom L H.
Chronic administration of imipramine and citalopram alters the expression of NMDA
receptor subunit mRNAs in mouse brain.
J Mol Neurosci.
1998;
10
219-233
Reference Ris Wihthout Link
- 56
Michael-Titus A T, Bains S, Jeetle J et al.
Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex – a
possible mechanism of neuroprotection in major depression?.
Neuroscience.
2000;
100
681-684
Reference Ris Wihthout Link
- 57
Tokarski K, Bobula B, Wabno J et al.
Repeated administration of imipramine attenuates glutamatergic transmission in rat
frontal cortex.
Neuroscience.
2008;
153
789-795
Reference Ris Wihthout Link
- 58
Golembiowska K, Dziubina A.
Effect of acute and chronic administration of citalopram on glutamate and aspartate
release in the rat prefrontal cortex.
Pol J Pharmacol.
2000;
52
441-448
Reference Ris Wihthout Link
- 59
Sernagor E, Kuhn D, Vyklicky Jr L et al.
Open channel block of NMDA receptor responses evoked by tricyclic antidepressants.
Neuron.
1989;
2
1221-1227
Reference Ris Wihthout Link
- 60
Cai Z, McCaslin P P.
Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used
therapeutically, reduce kainate- and Nmethyl- D-aspartate-induced intracellular Ca2
+ levels in neuronal culture.
Eur J Pharmacol.
1992;
219
53-57
Reference Ris Wihthout Link
- 61
Watanabe Y, Saito H, Abe K.
Tricyclic antidepressants block NMDA receptor-mediated synaptic responses and induction
of long-term potentiation in rat hippocampal slices.
Neuropharmacology.
1993;
32
479-486
Reference Ris Wihthout Link
- 62
Takebayashi M, Kagaya A, Inagaki M et al.
Effects of antidepressants on gamma-aminobutyric acid- and N-methyl-D-aspartate-induced
intracellular Ca(2 + ) concentration increases in primary cultured rat cortical neurons.
Neuropsychobiology.
2000;
42
120-126
Reference Ris Wihthout Link
- 63
Bonanno G, Giambelli R, Raiteri L et al.
Chronic antidepressants reduce depolarization-evoked glutamate release and protein
interactions favoring formation of SNARE complex in hippocampus.
J Neurosci.
2005;
25
3270-3279
Reference Ris Wihthout Link
- 64
Szasz B K, Mike A, Karoly R et al.
Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central
nervous system.
Biol Psychiatry.
2007;
62
1303-1309
Reference Ris Wihthout Link
- 65
Mayer A, Szasz B K, Kiss J P.
Inhibitory effect of antidepressants on the NMDA-evoked ([3] H)noradrenaline release
from rat hippocampal slices.
Neurochem Int.
2009;
55
383-388
Reference Ris Wihthout Link
- 66
Svenningsson P, Tzavara E T, Witkin J M et al.
Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects
of fluoxetine (Prozac).
Proc Natl Acad Sci USA.
2002;
99
3182-3187
Reference Ris Wihthout Link
- 67
Svenningsson P, Bateup H, Qi H et al.
Involvement of AMPA receptor phosphorylation in antidepressant actions with special
reference to tianeptine.
Eur J Neurosci.
2007;
26
3509-3517
Reference Ris Wihthout Link
- 68
Du J, Suzuki K, Wei Y et al.
The Anticonvulsants lamotrigine, riluzole and valproate differentially regulate AMPA
receptor membrane localization: relationship to clinical effects in mood disorders.
Neuropsychopharmacology.
2007;
32
793-802
Reference Ris Wihthout Link
- 69
Martinez-Turrillas R, Frechilla D, De lRio J.
Chronic antidepressant treatment increases the membrane expression of AMPA receptors
in rat hippocampus.
Neuropharmacology.
2002;
43
1230-1237
Reference Ris Wihthout Link
- 70
Barbon A, Popoli M, La V ia L et al.
Regulation of editing and expression of glutamate alpha-amino-propionic-acid [AMPA]/kainate
receptors by antidepressant drugs.
Biol Psychiatry.
2006;
59
713-720
Reference Ris Wihthout Link
- 71
Bobula B, Tokarski K, Hess G.
Repeated administration of antidepressants decreases field potenzials in rat frontal
cortex.
Neuroscience.
2003;
120
765-769
Reference Ris Wihthout Link
- 72
Bobula B, Hess G.
Antidepressant treatments-induced modifications of glutamatergic transmission in rat
frontal cortex.
Pharmacol Rep.
2008;
60
865-871
Reference Ris Wihthout Link
- 73
Dixon J F, Hokin L E.
Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake
by presynaptic nerve endings in mouse cerebral cortex.
Proc Natl Acad Sci USA.
1998;
95
8363-8368
Reference Ris Wihthout Link
- 74
Greenhill S D, Jones R S.
Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to
excitation and decrease neuronal excitability in neurones of the rat entorhinal cortex
in vitro.
Neuroscience.
2010;
167
456-474
Reference Ris Wihthout Link
- 75
Trullas R, Skolnick P.
Functional antagonists at the NMDA receptor complex exhibit antidepressant actions.
Eur J Pharmacol.
1990;
185
1-10
Reference Ris Wihthout Link
- 76
Kos T, Legutko B, Danysz W et al.
Enhancement of antidepressant-like effects but not brain-derived neurotrophic factor
mRNA expression by the novel N-methyl-D-aspartate receptor antagonist neramexane in
mice.
J Pharmacol Exp Ther.
2006;
318
1128-1136
Reference Ris Wihthout Link
- 77
Chaturvedi H K, Bapna J S, Chandra D.
Effect of fluvoxamine and N-methyl-Daspartate receptor antagonists on shock-induced
depression in mice.
Indian J Physiol Pharmacol.
2001;
45
199-207
Reference Ris Wihthout Link
- 78
Yilmaz A, Schulz D, Aksoy A et al.
Prolonged effect of an anesthetic dose of ketamine on behavioral despair.
Pharmacol Biochem Behav.
2002;
71
341-344
Reference Ris Wihthout Link
- 79
Maeng S, Zarate Jr C A, Du J et al.
Cellular mechanisms underlying the antidepressant effects of ketamine: role of &alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid receptors.
Biol Psychiatry.
2008;
63
349-352
Reference Ris Wihthout Link
- 80
Garcia L S, Comim C M, Valvassori S S et al.
Chronic administration of ketamine elicits antidepressant-like effects in rats without
affecting hippocampal brain-derived neurotrophic factor protein levels.
Basic Clin Pharmacol Toxicol.
2008;
103
502-506
Reference Ris Wihthout Link
- 81
Garcia L S, Comim C M, Valvassori S S et al.
Acute administration of ketamine induces antidepressant-like effects in the forced
swimming test and increases BDNF levels in the rat hippocampus.
Prog Neuropsychopharmacol Biol Psychiatry.
2008;
32
140-144
Reference Ris Wihthout Link
- 82
Engin E, Treit D, Dickson C T.
Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological
animal models.
Neuroscience.
2009;
161
359-369
Erratum in: Neuroscience 2009; 162: 1438 – 1439
Reference Ris Wihthout Link
- 83
Kos T, Popik P, Pietraszek M et al.
Effect of 5-HT3 receptor antagonist MDL 72 222 on behaviors induced by ketamine in
rats and mice.
Eur Neuropsychopharmacol.
2006;
16
297-310
Reference Ris Wihthout Link
- 84
Maj J, Rogóz Z.
Synergistic effect of amantadine and imipramine in the forced swimming test.
Pol J Pharmacol.
2000;
52
111-114
Reference Ris Wihthout Link
- 85
Almeida R C, Souza D G, Soletti R C et al.
Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like
effect of memantine in mice.
Neurosci Lett.
2006;
395
93-97
Reference Ris Wihthout Link
- 86
Rogoz Z, Skuza G, Maj J et al.
Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs
in the forced swimming test in rats.
Neuropharmacology.
2002;
42
1024-1030
Reference Ris Wihthout Link
- 87
Banasr M, Chowdhury G M, Terwilliger R et al.
Glial pathology in an animal model of depression: reversal of stress-induced cellular,
metabolic and behavioural deficits by the glutamate-modulating drug riluzole.
Mol Psychiatry.
2008;
[Epub ahead of print]
Reference Ris Wihthout Link
- 88
Alt A, Witkin J M, Bleakman D.
A role for AMPA receptors in mood disorders.
Curr Pharm Des.
2005;
11
1511-1527
Reference Ris Wihthout Link
- 89
Bleakman D, Alt A, Witkin J M.
AMPA receptors in the therapeutic management of depression.
CNS Neurol Disord Drug Targets.
2007;
6
117-126
Reference Ris Wihthout Link
- 90
O’Neill M J, Witkin J M.
AMPA receptor potentiators: application for depression and Parkinson’s disease.
Curr Drug Targets.
2007;
8
603-620
Reference Ris Wihthout Link
- 91
Chourbaji S, Vogt M A, Fumagalli F et al.
AMPA receptor subunit 1 [GluR-A] knockout mice model the glutamate hypothesis of depression.
FASEB J.
2008;
22
3129-3134
Reference Ris Wihthout Link
- 92
Belozertseva V, Kos T, Popik P et al.
Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim
and the mouse tail suspension tests.
Eur Neuropsychopharmacol.
2007;
17
172-179
Reference Ris Wihthout Link
- 93
Li X, Need A B, Baez M et al.
Metabotropic glutamate 5 receptor antagonism is associated with antidepressant-like
effects in mice.
J Pharmacol Exp Ther.
2006;
319
254-259
Reference Ris Wihthout Link
- 94
Chaki S, Yoshikawa R, Hirota S et al.
MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist
with antidepressant-like activity.
Neuropharmacology.
2004;
46
457-467
Reference Ris Wihthout Link
- 95
Bespalov A Y, Gaalen M M, Sukhotina I A et al.
Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341 495,
in animal models of anxiety and depression.
Eur J Pharmacol.
2008;
592
96-102
Reference Ris Wihthout Link
- 96
Pałucha van A, Tatarczyńska E, Brański P et al.
Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects
after central administration in rats.
Neuropharmacology.
2004;
46
151-159
Reference Ris Wihthout Link
- 97
Palucha A, Klak K, Branski P et al.
Activation of the mGlu7 receptor elicits antidepressant-like effects in mice.
Psychopharmacology.
2007;
194
555-562
Reference Ris Wihthout Link
- 98
Cryan J F, Holmes A.
The ascent of mouse: advances in modelling human depression and anxiety.
Nat Rev Drug Discov.
2005;
4
775-790
Reference Ris Wihthout Link
- 99
Benoit E, Escande D.
Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre.
Pflugers Arch.
1991;
419
603-609
Reference Ris Wihthout Link
- 100
Zarate Jr C A, Payne J L, Quiroz J et al.
An open-label trial of riluzole in patients with treatment-resistant major depression.
Am J Psychiatry.
2004;
161
171-174
Reference Ris Wihthout Link
- 101
Sanacora G, Kendell S F, Fenton L et al.
Riluzole augmentation for treatment-resistant depression.
Am J Psychiatry.
2004;
161
2132
Reference Ris Wihthout Link
- 102
Zarate Jr C A, Quiroz J A, Singh J B et al.
An open-label trial of the glutamate-modulating agent riluzole in combination with
lithium for the treatment of bipolar depression.
Biol Psychiatry.
2005;
57
430-432
Reference Ris Wihthout Link
- 103
Mathew S J, Amiel J M, Coplan J D et al.
Open-label trial of riluzole in generalized anxiety disorder.
Am J Psychiatry.
2005;
162
2379-2381
Reference Ris Wihthout Link
- 104
Mathew S J, Murrough J W, aan het Rot M et al.
Riluzole for relapse prevention following intravenous ketamine in treatment-resistant
depression: a pilot randomized, placebo-controlled continuation trial.
Int J Neuropsychopharmacol.
2010;
13
71-82
Reference Ris Wihthout Link
- 105
Ferguson J M, Shingleton R N.
An open-label, flexible-dose study of memantine in major depressive disorder.
Clin Neuropharmacol.
2007;
30
136-144
Reference Ris Wihthout Link
- 106
Zarate Jr C A, Singh J B, Quiroz J A et al.
A double-blind, placebo-controlled study of memantine in the treatment of major depression.
Am J Psychiatry.
2006;
163
153-155
Reference Ris Wihthout Link
- 107
Muhonen L H, Lönnqvist J, Juva K et al.
Double-blind, randomized comparison of memantine and escitalopram for the treatment
of major depressive disorder comorbid with alcohol dependence.
J Clin Psychiatry.
2008;
69
392-399
Reference Ris Wihthout Link
- 108
Berman R M, Cappiello A, Anand A et al.
Antidepressant effects of ketamine in depressed patients.
Biol Psychiatry.
2000;
47
351-354
Reference Ris Wihthout Link
- 109
Zarate Jr C A, Singh J B, Carlson P J et al.
A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major
depression.
Arch Gen Psychiatry.
2006;
63
856-864
Reference Ris Wihthout Link
- 110
Paslakis G, Gilles M, Meyer-Lindenberg A et al.
Oral Administration of the NMDA Receptor Antagonist S-Ketamine as Add-On Therapy of
Depression: A Case Series.
Pharmacopsychiatry.
2010;
43
33-35
Reference Ris Wihthout Link
- 111
Salvadore G, Cornwell B R, Colon-Rosario V et al.
Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological
biomarker that predicts rapid antidepressant response to ketamine.
Biol Psychiatry.
2009;
65
289-295
Reference Ris Wihthout Link
- 112 Kinsler R, Duman R S. Acute ketamine administration increases VEGF expression in the hippocampus: potenzial
role in the rapid antidepressant effects of ketamine. Abstract of Society for Neuroscience Meeting at Washington DC 2008 ; #56.14
Reference Ris Wihthout Link
- 113
Warner-Schmidt J L, Duman R S.
VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants.
Proc Natl Acad Sci USA.
2007;
104
4647-4652
Reference Ris Wihthout Link
- 114
Machado-Vieira R, Yuan P, Brutsche N et al.
Brain-derived neurotrophic factor and initial antidepressant response to an N-methyl-D-aspartate
antagonist.
J Clin Psychiatry.
2009;
; [Epub ahead of print]
Reference Ris Wihthout Link
- 115
Stahl S M.
The sigma enigma: can sigma receptors provide a novel target for disorders of mood
and cognition?.
J Clin Psychiatry.
2008;
69
1673-1674
Reference Ris Wihthout Link
- 116
Borza I, Domány G.
NR2B selective NMDA antagonists: the evolution of the ifenprodil-type pharmacophore.
Curr Top Med Chem.
2006;
6
687-695
Reference Ris Wihthout Link
- 117
Inta D, Trusel M, Riva M A et al.
Differential c-Fos induction by different NMDA receptor antagonists with antidepressant
efficacy: potenzial clinical implications.
Int J Neuropsychopharmacol.
2009;
12
1133-1136
Reference Ris Wihthout Link
- 118
Preskorn S H, Baker B, Kolluri S et al.
An innovative design to establish proof of concept of the antidepressant effects of
the NR 2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients
with treatment-refractory major depressive disorder.
J Clin Psychopharmacol.
2008;
28
631-637
Reference Ris Wihthout Link
- 119
Mineur Y S, Picciotto M R, Sanacora G.
Antidepressant-like effects of ceftriaxone in male C 57BL/ 6J mice.
Biol Psychiatry.
2007;
61
250-252
Reference Ris Wihthout Link
- 120
Rothstein J D, Patel S, Regan M R et al.
β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression.
Nature.
2005;
433
73-77
Reference Ris Wihthout Link
- 121
Berk M, Copolov D L, Dean O et al.
N-acetyl cysteine for depressive symptoms in bipolar disorder – a double-blind randomized
placebo-controlled trial.
Biol Psychiatry.
2008;
64
468-475
Reference Ris Wihthout Link
Dr. Georgios Paslakis
Klinik für Psychiatrie und Psychotherapie
Zentralinstitut für Seelische Gesundheit
J5
68159 Mannheim
eMail: Georgios.Paslakis@zi-mannheim.de
