Subscribe to RSS
DOI: 10.1055/s-0029-1245808
© Georg Thieme Verlag KG Stuttgart · New York
Oxygen-Enhanced MRI of the Lungs: Intraindividual Comparison Between 1.5 and 3 Tesla
Sauerstoffverstärkte MRT der Lunge: Intraindividueller Vergleich zwischen 1,5 und 3 TeslaPublication History
received: 21.4.2010
accepted: 29.9.2010
Publication Date:
03 February 2011 (online)

Zusammenfassung
Ziel: Die Machbarkeit der sauerstoffverstärkten MRT der Lunge bei 3 Tesla sollte beurteilt und die Signalcharakteristika mit 1,5 Tesla verglichen werden. Material und Methoden: 13 Probanden unterzogen sich einer sauerstoffverstärkten MRT-Untersuchung bei 1,5 und 3 T mit einer koronar orientierten T 1-gewichteten, einschichtigen, nichtselektiven Inversion-Recovery-Half-Fourier-Fast-Spin-Echo-Sequenz mit Atem- und EKG-Triggerung. Je 40 Einzelmessungen wurden unter Raumluftatmung und unter Sauerstoffatmung (15 l/min über eine Atemmaske) durchgeführt. Das Signal-Rausch-Verhältnis (SNR) von Lungengewebe wurde mithilfe eines Differenzbildverfahrens ermittelt. Die Bildqualität der Einzelakquisitionen wurde visuell beurteilt. Der Mittelwert des sauerstoffvermittelten relativen Signalanstiegs und sein regionaler Variationskoeffizient wurden berechnet und der Signalanstieg in Parameterkarten farbcodiert dargestellt. Verteilung und Heterogenität des Signalanstiegs in den Parameterkarten bei beiden Feldstärken wurden visuell verglichen. Ergebnisse: Der mittlere relative Signalanstieg durch Sauerstoffatmung betrug 13 % (± 5.6 %) bei 1,5 T und 9.0 % (± 8.0 %) bei 3 T. Ein signifikant höherer Wert des regionalen Variationskoeffizienten zeigte sich bei 3 T. Auf den Parameterkarten zeigte sich visuell und quantitativ bei 3 T eine deutlich inhomogenere Verteilung des Signalanstiegs. Das SNR unterschied sich bei den beiden Feldstärken nicht signifikant, war jedoch bei 3 T tendenziell (um ca. 10 %) höher. Schlussfolgerung: Die sauerstoffverstärkte MRT-Bildgebung der Lunge lässt sich prinzipiell bei 3 T durchführen, wenngleich der Signalanstieg bei 3 T derzeit im Vergleich zu 1,5 T heterogener und etwas geringer ist.
Abstract
Purpose: To assess the feasibility of oxygen-enhanced MRI of the lung at 3 Tesla and to compare signal characteristics with 1.5 Tesla. Materials and Methods: 13 volunteers underwent oxygen-enhanced lung MRI at 1.5 and 3 T with a T 1-weighted single-slice non-selective inversion-recovery single-shot half-Fourier fast-spin-echo sequence with simultaneous respiratory and cardiac triggering in coronal orientation. 40 measurements were acquired during room air breathing and subsequently during oxygen breathing (15 L/min, close-fitting face-mask). The signal-to-noise ratio (SNR) of the lung tissue was determined with a difference image method. The image quality of all acquisitions was visually assessed. The mean values of the oxygen-induced relative signal enhancement and its regional coefficient of variation were calculated and the signal enhancement was displayed as color-coded parameter maps. Oxygen-enhancement maps were visually assessed with respect to the distribution and heterogeneity of the oxygen-related signal enhancement at both field strengths. Results: The mean relative signal enhancement due to oxygen breathing was 13 % (± 5.6 %) at 1.5 T and of 9.0 % (± 8.0 %) at 3 T. The regional coefficient of variation was significantly higher at 3 T. Visual and quantitative assessment of the enhancement maps showed considerably less homogeneous distribution of the signal enhancement at 3 T. The SNR was not significantly different but showed a trend to slightly higher values (increase of about 10 %) at 3 T. Conclusion: Oxygen-enhanced pulmonary MRI is feasible at 3 Tesla. However, signal enhancement is currently more heterogeneous and slightly lower at 3 T.
Key words
3 Tesla MRI - oxygen-enhanced lung MRI - lung MRI - high-field lung MRI
References
- 1
Edelman R R, Hatabu H, Tadamura E et al.
Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced
magnetic resonance imaging.
Nat Med.
1996;
2
1236-1239
MissingFormLabel
- 2
Ohno Y, Chen Q, Hatabu H.
Oxygen-enhanced magnetic resonance ventilation imaging of lung.
Eur J Radiol.
2001;
37
164-171
MissingFormLabel
- 3
Ohno Y, Hatabu H.
Basics concepts and clinical applications of oxygen-enhanced MR imaging.
Eur J Radiol.
2007;
64
320-328
MissingFormLabel
- 4
Muller C J, Schwaiblmair M, Scheidler J et al.
Pulmonary diffusing capacity: assessment with oxygen-enhanced lung MR imaging preliminary
findings.
Radiology.
2002;
222
499-506
MissingFormLabel
- 5
Nakagawa T, Sakuma H, Murashima S et al.
Pulmonary ventilation-perfusion MR imaging in clinical patients.
J Magn Reson Imaging.
2001;
14
419-424
MissingFormLabel
- 6
Arnold J F, Kotas M, Fidler F et al.
Quantitative regional oxygen transfer imaging of the human lung.
J Magn Reson Imaging.
2007;
26
637-645
MissingFormLabel
- 7
Dietrich O, Losert C, Attenberger U et al.
Fast oxygen-enhanced multislice imaging of the lung using parallel acquisition techniques.
Magn Reson Med.
2005;
53
1317-1325
MissingFormLabel
- 8
Bergin C J, Glover G H, Pauly J M.
Lung parenchyma: magnetic susceptibility in MR imaging.
Radiology.
1991;
180
845-848
MissingFormLabel
- 9
Fink C, Puderbach M, Biederer J et al.
Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five
different pulse sequences.
Invest Radiol.
2007;
42
377-383
MissingFormLabel
- 10
Molinari F, Eichinger M, Risse F et al.
Navigator-triggered oxygen-enhanced MRI with simultaneous cardiac and respiratory
synchronization for the assessment of interstitial lung disease.
J Magn Reson Imaging.
2007;
26
1523-1529
MissingFormLabel
- 11
Molinari F, Gaudino S, Fink C et al.
Simultaneous cardiac and respiratory synchronization in oxygen-enhanced magnetic resonance
imaging of the lung using a pneumotachograph for respiratory monitoring.
Invest Radiol.
2006;
41
476-485
MissingFormLabel
- 12
Vaninbroukx J, Bosmans H, Sunaert S et al.
The use of ECG and respiratory triggering to improve the sensitivity of oxygen-enhanced
proton MRI of lung ventilation.
Eur Radiol.
2003;
13
1260-1265
MissingFormLabel
- 13
Molinari F, Puderbach M, Eichinger M et al.
Oxygen-enhanced magnetic resonance imaging: influence of different gas delivery methods
on the T 1-changes of the lungs.
Invest Radiol.
2008;
43
427-432
MissingFormLabel
- 14
Prisk G K, Yamada K, Henderson A C et al.
Pulmonary perfusion in the prone and supine postures in the normal human lung.
J Appl Physiol.
2007;
103
883-894
MissingFormLabel
- 15
Ohno Y, Oshio K, Uematsu H et al.
Single-shot half-Fourier RARE sequence with ultra-short inter-echo spacing for lung
imaging.
J Magn Reson Imaging.
2004;
20
336-339
MissingFormLabel
- 16
Mai V M, Liu B, Li W et al.
Influence of oxygen flow rate on signal and T(1) changes in oxygen-enhanced ventilation
imaging.
J Magn Reson Imaging.
2002;
16
37-41
MissingFormLabel
- 17
Bankier A A, O’Donnell C R, Mai V M et al.
Impact of lung volume on MR signal intensity changes of the lung parenchyma.
J Magn Reson Imaging.
2004;
20
961-966
MissingFormLabel
- 18
Dietrich O, Raya J G, Reeder S B et al.
Measurement of signal-to-noise ratios in MR images: influence of multichannel coils,
parallel imaging, and reconstruction filters.
J Magn Reson Imaging.
2007;
26
375-385
MissingFormLabel
- 19
Dehnert C, Risse F, Ley S et al.
Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans.
American journal of respiratory and critical care medicine.
2006;
174
1132-1138
MissingFormLabel
- 20
Levin D L, Buxton R B, Spiess J P et al.
Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance
imaging.
J Appl Physiol.
2007;
102
2064-2070
MissingFormLabel
- 21
Hintze C, Stemmer A, Bock M et al.
A hybrid breath hold and continued respiration-triggered technique for time-resolved
3D MRI perfusion studies in lung cancer.
Fortschr Röntgenstr.
2010;
182
45-52
MissingFormLabel
- 22
Ley-Zaporozhan J, Ley S, Sommerburg O et al.
Clinical application of MRI in children for the assessment of pulmonary diseases.
Fortschr Röntgenstr.
2009;
181
419-432
MissingFormLabel
- 23
Tetzlaff R, Eichinger M, Schobinger M et al.
Semiautomatic assessment of respiratory motion in dynamic MRI – comparison with simultaneously
acquired spirometry.
Fortschr Röntgenstr.
2008;
180
961-967
MissingFormLabel
- 24
Wolf T, Anjorin A, Posselt H et al.
MRT-basierte Flussmessungen im Truncus pulmonalis zur Detektion einer pulmonal-arteriellen
Hypertonie in Patienten mit zystischer Fibrose.
Fortschr Röntgenstr.
2009;
181
139-146
MissingFormLabel
- 25
Nael K, Michaely H J, Lee M et al.
Dynamic pulmonary perfusion and flow quantification with MR imaging, 3.0 T vs. 1.5
T: initial results.
J Magn Reson Imaging.
2006;
24
333-339
MissingFormLabel
- 26
Nael K, Saleh R, Nyborg G K et al.
Pulmonary MR perfusion at 3.0 Tesla using a blood pool contrast agent: Initial results
in a swine model.
J Magn Reson Imaging.
2007;
25
66-72
MissingFormLabel
- 27
Ohno Y, Koyama H, Nogami M et al.
Dynamic oxygen-enhanced MRI versus quantitative CT: pulmonary functional loss assessment
and clinical stage classification of smoking-related COPD.
Am J Roentgenol.
2008;
190
W93-99
MissingFormLabel
- 28
Ohno Y, Iwasawa T, Seo J B et al.
Oxygen-enhanced magnetic resonance imaging versus computed tomography: multicenter
study for clinical stage classification of smoking-related chronic obstructive pulmonary
disease.
American journal of respiratory and critical care medicine.
2008;
177
1095-1102
MissingFormLabel
- 29
Stock K W, Chen Q, Morrin M et al.
Oxygen-enhanced magnetic resonance ventilation imaging of the human lung at 0.2 and
1.5T.
J Magn Reson Imaging.
1999;
9
838-841
MissingFormLabel
- 30
Loffler R, Muller C J, Peller M et al.
Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced
MR lung imaging.
Magn Reson Med.
2000;
43
860-866
MissingFormLabel
- 31
Chen Q, Jakob P M, Griswold M A et al.
Oxygen enhanced MR ventilation imaging of the lung.
MAGMA Magn Reson Mater Phy.
1998;
7
153-161
MissingFormLabel
- 32
Jakob P M, Hillenbrand C M, Wang T et al.
Rapid quantitative lung (1)H T(1) mapping.
J Magn Reson Imaging.
2001;
14
795-799
MissingFormLabel
- 33
Nichols M B, Paschal C B.
Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue-based
and regional gradient analyses.
J Magn Reson Imaging.
2008;
27
224-228
MissingFormLabel
- 34
Dietrich O, Raya J G, Fasol U et al.
Oxygen-enhanced MRI of the lung at 3 Tesla: Feasibility and T 1 relaxation times.
Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM).
2006;
14
1307
MissingFormLabel
- 35
Dietrich O, Reiser M F, Schoenberg S O.
Artifacts in 3-T MRI: physical background and reduction strategies.
Eur J Radiol.
2008;
65
29-35
MissingFormLabel
- 36
Puderbach M, Ohno Y, Kawamitsu H et al.
Influence of inversion pulse type in assessing lung-oxygen-enhancement by centrically-reordered
non-slice-selective inversion-recovery half-Fourier single-shot turbo spin-echo (HASTE)
sequence.
J Magn Reson Imaging.
2007;
26
1133-1138
MissingFormLabel
PD Dr. Olaf Dietrich
Josef Lissner Laboratory for Biomedical Imaging, Institut für Klinische Radiologie,
Ludwig-Maximilians-Universität München, Klinikum Großhadern
Marchioninistr. 15
81377 München
Phone: ++ 49/89/70 95 46 22
Fax: ++ 49/89/70 95 46 27
Email: od@dtrx.net