RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245813
© Georg Thieme Verlag KG Stuttgart · New York
Coronary Artery Calcium Score: Influence of the Reconstruction Interval on Cardiac Risk Stratification in Asymptomatic Patients using Dual-Source Computed Tomography
Koronararterieller Kalkscore: Einfluss des Rekonstruktionsintervalls auf die Risikostratifizierung bei asymptomatischen Patienten mittels Dual-Source-ComputertomografiePublikationsverlauf
received: 7.2.2010
accepted: 29.9.2010
Publikationsdatum:
15. November 2010 (online)

Zusammenfassung
Ziel: Ziel dieser Studie war es, den Einfluss unterschiedlicher Rekonstruktionszeitpunkte auf den koronaren Kalkscore bei der Dual-Source-Computertomografie (DSCT) und den Einfluss auf die individuelle kardiovaskuläre Risikoabschätzung zu untersuchen. Material und Methoden: Bei 61 konsekutiven Patienten wurde die Bestimmung des Agatston-Scores mittels DSCT durchgeführt. Für jeden Patienten erfolgte die Berechnung von fünf diastolischen Datensätzen (50 %, 55 %, 60 %, 65 % und 70 % des R–R-Intervalls). Für alle Rekonstruktionsintervalle wurden der mittlere Agatston-Score, der Volumenscore sowie die jeweilige relative Variabilität bestimmt. Auf Basis eines alters- und geschlechtbasierten Normalkollektives erfolgte die Einschätzung des individuellen kardiovaskulären Risikos. Ergebnisse: Der mittlere Agatston-Score lag bei 184,8 ± 377,9 (relative Variabilität 47 ± 52 %). Der mittlere Volumenscore lag bei 164,4 ± 310,1 (relative Variabilität 49 ± 58 %). Es zeigte sich eine negative Korrelation zwischen dem Agatston-Score und der relativen Variabilität (r = –0,37; p < 0,01). Abhängig vom Rekonstruktionsintervall wurden 18 vornehmlich jüngere Patienten zu mehr als einer Risikogruppe zugeordnet. Schlussfolgerung: Trotz erhöhter zeitlicher Auflösung der DSCT-Untersuchungen hängen Agatston- und Volumenscores von dem jeweiligen Rekonstruktionsintervall während des Herzzyklus ab. Die Tatsache, dass die höchste relative Variabilität der Agatston- und Volumenscores sich bei jungen Patienten mit geringen koronaren Kalkwerten finden, kann unterschiedliche Behandlungsstrategien zur Folge haben. Die Auswertung mehrerer Rekonstruktionsintervalle könnte gegebenenfalls zu einer genaueren Analyse des koronaren Kalkscores und somit zu einer besseren Risikostratifizierung führen.
Abstract
Purpose: To evaluate the impact of the reconstruction interval on coronary calcium score and cardiac risk stratification using dual-source computed tomography (DSCT). Materials and Methods: DSCT coronary calcium scoring was performed in 61 consecutive patients, and five data sets per patient were reconstructed within diastole (50 – 70 % of the R–R interval). The Agatston score, volumetric score and the relative variability were assessed for all reconstructions. To assess the individual cardiovascular risk, patients were assigned to risk groups based on age and gender-matched percentile ranks. Results: The mean Agatston score was 184.8 ± 377.9 (relative variability 47 % ± 52 %). The mean volumetric score was 164.4 ± 310.1 (relative variability 49 % ± 58 %). There was a negative correlation between the total Agatston score and the relative variability (r = –0.37; p < 0.01). Depending on the reconstruction interval used, 18 predominantly young patients were assigned to more than one risk group. Conclusion: Despite the increased temporal resolution of DSCT examinations, the Agatston and volumetric scores depend on the reconstruction time within the cardiac cycle. The fact that the greatest relative variability for both the Agatston score and the volumetric score was found in young patients with small amounts of coronary calcium may result in different treatment strategies for young patients depending on the reconstruction used. Therefore, more accurate risk stratification may require the analysis of multiple reconstruction intervals.
Key words
cardiac - CT - calcium scoring - Agatston score - cardiac risk stratification
References
- 1
Nassenstein K, Waltering K, Hollenhorst M et al.
[Quantification of microvascular obstruction in acute myocardial infarction using
cardiac MRI].
Fortschr Röntgenstr.
2009;
181
669-674
MissingFormLabel
- 2
Nassenstein K, Bruder O, Breuckmann F et al.
Prevalence, pattern, and functional impact of late gadolinium enhancement in left
ventricular hypertrophy due to aortic valve stenosis.
Fortschr Röntgenstr.
2009;
181
472-476
MissingFormLabel
- 3
Fischbach R, Miller S, Beer M et al.
[Recommendations of the Heart Diagnosis Working Group of the German Roentgen Society
for use of computerized tomography and magnetic resonance tomography in heart diagnosis.
1 – Computerized tomography].
Fortschr Röntgenstr.
2009;
181
700-706
MissingFormLabel
- 4
Mautner G C, Mautner S L, Froehlich J et al.
Coronary artery calcification: assessment with electron beam CT and histomorphometric
correlation.
Radiology.
1994;
192
619-623
MissingFormLabel
- 5
Rumberger J A, Sheedy 3rd
P F, Breen J F et al.
Coronary calcium, as determined by electron beam computed tomography, and coronary
disease on arteriogram. Effect of patient’s sex on diagnosis.
Circulation.
1995;
91
1363-1367
MissingFormLabel
- 6
Rumberger J A, Simons D B, Fitzpatrick L A et al.
Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic
plaque area. A histopathologic correlative study.
Circulation.
1995;
92
2157-2162
MissingFormLabel
- 7
Wexler L, Brundage B, Crouse J et al.
Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and
clinical implications. A statement for health professionals from the American Heart
Association. Writing Group.
Circulation.
1996;
94
1175-1192
MissingFormLabel
- 8
Keelan P C, Bielak L F, Ashai K et al.
Long-term prognostic value of coronary calcification detected by electron-beam computed
tomography in patients undergoing coronary angiography.
Circulation.
2001;
104
412-417
MissingFormLabel
- 9
Detrano R, Hsiai T, Wang S et al.
Prognostic value of coronary calcification and angiographic stenoses in patients undergoing
coronary angiography.
J Am Coll Cardiol.
1996;
27
285-290
MissingFormLabel
- 10
Detrano R C, Wong N D, Tang W et al.
Prognostic significance of cardiac cinefluoroscopy for coronary calcific deposits
in asymptomatic high risk subjects.
J Am Coll Cardiol.
1994;
24
354-358
MissingFormLabel
- 11
Schlosser T, Hunold P, Schmermund A et al.
Coronary artery calcium score: influence of reconstruction interval at 16-detector
row CT with retrospective electrocardiographic gating.
Radiology.
2004;
233
586-589
MissingFormLabel
- 12
Schlosser T, Hunold P, Voigtlander T et al.
Coronary artery calcium scoring: influence of reconstruction interval and reconstruction
increment using 64-MDCT.
Am J Roentgenol.
2007;
188
1063-1068
MissingFormLabel
- 13
Artmann A, Enayati S, Ratzenbock M et al.
[Image quality of CT angiography of coronary arteries depending on the degree of coronary
calcification using a dual source CT scanner].
Fortschr Röntgenstr.
2009;
181
863-869
MissingFormLabel
- 14
Luders F, Fischbach R, Seifarth H et al.
[Dual-source computed tomography: effect on regional and global left ventricular function
assessment compared to magnetic resonance imaging].
Fortschr Röntgenstr.
2009;
181
962-969
MissingFormLabel
- 15
Kuettner A, Gehann B, Spolnik J et al.
Strategies for dose-optimized imaging in pediatric cardiac dual source CT.
Fortschr Röntgenstr.
2009;
181
339-348
MissingFormLabel
- 16
Groen J M, Greuter M J, Vliegenthart R et al.
Calcium scoring using 64-slice MDCT, dual source CT and EBT: a comparative phantom
study.
Int J Cardiovasc Imaging.
2008;
24 (5)
547-556
MissingFormLabel
- 17
Leber A W, Johnson T, Becker A et al.
Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients
with an intermediate pretest likelihood for coronary artery disease.
Eur Heart J.
2007;
28
2354-2360
MissingFormLabel
- 18
Rist C, Johnson T R, Becker A et al.
[Dual-source cardiac CT imaging with improved temporal resolution: Impact on image
quality and analysis of left ventricular function].
Radiologe.
2007;
47
287-290, 292 – 284
MissingFormLabel
- 19
Wust W, Zunker C, May M et al.
[Septal delineation using a 20 % diluted contrast chaser bolus in coronary CT angiography:
a comparison of 64-slice and dual source CT].
Fortschr Röntgenstr.
2009;
181
324-331
MissingFormLabel
- 20
Wilson P W, D’Agostino R B, Levy D et al.
Prediction of coronary heart disease using risk factor categories.
Circulation.
1998;
97
1837-1847
MissingFormLabel
- 21
Hausleiter J, Meyer T, Hadamitzky M et al.
Radiation dose estimates from cardiac multislice computed tomography in daily practice:
impact of different scanning protocols on effective dose estimates.
Circulation.
2006;
113
1305-1310
MissingFormLabel
- 22
Mahnken A H, Wildberger J E, Sinha A M et al.
Variation of the coronary calcium score depending on image reconstruction interval
and scoring algorithm.
Invest Radiol.
2002;
37
496-502
MissingFormLabel
- 23
Gerber T C, O’Brien P C, Pastor K et al.
Evaluation of reconstruction windows for multislice computed tomography in quantification
of coronary calcium.
Invest Radiol.
2003;
38
108-118
MissingFormLabel
- 24
Agatston A S, Janowitz W R, Hildner F J et al.
Quantification of coronary artery calcium using ultrafast computed tomography.
J Am Coll Cardiol.
1990;
15
827-832
MissingFormLabel
- 25
Altman D G, Bland J M.
Comparing several groups using analysis of variance.
Bmj.
1996;
312
1472-1473
MissingFormLabel
- 26
Bland J M, Altman D G.
Measurement error and correlation coefficients.
Bmj.
1996;
313
41-42
MissingFormLabel
- 27
Bland J M, Altman D G.
Correlation, regression, and repeated data.
Bmj.
1994;
308
896
MissingFormLabel
- 28
Schmermund A, Mohlenkamp S, Berenbein S et al.
Population-based assessment of subclinical coronary atherosclerosis using electron-beam
computed tomography.
Atherosclerosis.
2006;
185
177-182
MissingFormLabel
- 29
Anders K, Baum U, Gauss S et al.
[Initial experience with prospectively triggered, sequential CT coronary angiography
on a 128-slice scanner].
Fortschr Röntgenstr.
2009;
181
332-338
MissingFormLabel
- 30
Hofman M B, Wickline S A, Lorenz C H.
Quantification of in-plane motion of the coronary arteries during the cardiac cycle:
implications for acquisition window duration for MR flow quantification.
J Magn Reson Imaging.
1998;
8
568-576
MissingFormLabel
- 31
Achenbach S, Ropers D, Holle J et al.
In-plane coronary arterial motion velocity: measurement with electron-beam CT.
Radiology.
2000;
216
457-463
MissingFormLabel
Dr. Christoph J. Jensen
Klinik für Kardiologie und Angiologie, Elisabeth Krankenhaus Essen
Klara-Kopp-Weg 1
45138 Essen
Telefon: ++ 49/2 01/89 70
Fax: ++ 49/2 01/8 97 39 09
eMail: christoph.jensen@gmx.de