Subscribe to RSS
DOI: 10.1055/s-0029-1245814
© Georg Thieme Verlag KG Stuttgart · New York
Volume Measurement of Liver Metastases Using Multidetector Computed Tomography: Comparison of Lesion Diameter and Volume segmentation – A Phantom Study
Volumenmessung von Lebermetastasen in der Multidetektor-Computertomografie: Vergleich von Läsionsdurchmesser und Volumensegmentierung – eine PhantomstudiePublication History
received: 25.4.2010
accepted: 16.9.2010
Publication Date:
23 November 2010 (online)
Zusammenfassung
Ziel: Der Vergleich der Volumenbestimmung mittels Diameter und dreier Segmentierungsalgorithmen bei variierend rekonstruierter Schichtdicke aus Computertomografien (CT) eines Phantommodels für kolorektale Lebermetastasen. Material und Methoden: Basierend auf retrospektiv durchgeführten Messungen der CT-Absorption bei 20 Patienten mit kolorektalen Lebermetastasen wurde ein Phantommodell aus einem Schwamm mit verdünntem Kontrastmittel und 6 eingebetteten Polyamid-Kugeln (8 – 30 mm Diameter) entwickelt um das Kontrastverhalten von Lebermetastasen zu simulieren. Es wurden CT-Untersuchungen angefertigt und bei unterschiedlichen Schichtdicken rekonstruiert (0,625 / 1,25 / 2,5 / 3,75 mm; Inkrement 1). Ein Untersucher führte die softwaregestützte Volumenbestimmung mittels des maximalen Diameters, manueller Segmentierung, der Saatpixelmethode und des Schwellenwertes 6 Mal für jede Läsion in einer randomisierten Reihenfolge durch. Die absoluten und relativen Differenzen sowie die Untersuchervariabilität und der Einfluss der Schichtdicke wurden statistisch ermittelt. Ergebnisse: Die mittleren relativen Differenzen der Saatpixelmethode (1,2 – 5,9 %) und der manuellen Segmentierung (2,6 – 4,9 %) waren signifikant niedriger als die der Schwellenwertmethode (5,4 – 12,8 %) und der Diametermethode (12,3 – 18,5 %; p < 0,01). Die Volumenbestimmung mit der manuellen Segmentierung und der Saatpixelmethode profitierten von dünnschichtigen CT-Datensätzen. Die Intra-Beobachter-Variation war bei der manuellen Segmentierung (1,5 – 3,3 %) und der Saatpixelmethode (2,2 – 3,9 %) am niedrigsten (p < 0,001). Schlussfolgerungen: Die manuelle Segmentierung und die Saatpixelmethode im Dünnschicht-CT waren die Methoden mit den niedrigsten Volumenmessfehlern und Intra-Beobachter-Differenz.
Abstract
Purpose: To compare lesion volume determination by applying diameter measurement and three different segmentation algorithms at different slice thicknesses reconstructed from computed tomography (CT) of a phantom model for hepatic colorectal metastases. Materials and Methods: Based on CT attenuation measurements obtained retrospectively from 20 patients with colorectal liver metastases, a phantom model was designed with a sponge soaked with a dilution of contrast agent and 6 embedded polyamide spheres (diameter, 8 – 30 mm) to simulate the contrast behavior of liver metastases. CT scans were obtained and reconstructed at different slice thicknesses (0.625 / 1.25 / 2.5 / 3.75 mm; increment, 1). One observer performed software-aided volume determination using the maximum diameter, manual segmentation, seed point method, and threshold method six times for each lesion in a randomized order. Statistical analysis revealed the absolute and relative differences from the actual lesion volumes and the intraobserver differences as well as the influence of slice thickness for each method. Results: The mean relative differences of the seed point method (1.2 – 5.9 %) and manual segmentation (2.6 – 4.9 %) were significantly lower than the threshold method (5.4 – 12.8 %) and diameter measurement (12.3 – 18.5 %; p < 0.01). Volume determination by manual segmentation and the seed point method benefited from the use of thin-slice CT datasets. The intraobserver variation was lowest when using the manual segmentation (1.5 – 3.3 %) and the seed point method (2.2 – 3.9 %; p < 0.001). Conclusion: Manual segmentation and the seed point method for thin CT slices were the methods with the lowest volume differences and intraobserver variation.
Key words
RECIST - tumor volume - liver metastases - phantom - computed tomography - segmentation
References
- 1 Therasse P, Arbuck S G, Eisenhauer E A et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer. J Natl Cancer Inst. 2000; 92 205-216
- 2 Hopper K D, Kasales C J, Eggli K D et al. The impact of 2D versus 3D quantitation of tumor bulk determination on current methods of assessing response to treatment. J Comput Assist Tomogr. 1996; 20 930-937
- 3 Prasad S R, Jhaveri K S, Saini S et al. CT tumor measurement for therapeutic response assessment: comparison of unidimensional, bidimensional, and volumetric techniques initial observations. Radiology. 2002; 225 416-419
- 4 Mantatzis M, Kakolyris S, Amarantidis K et al. Treatment response classification of liver metastatic disease evaluated on imaging. Are RECIST unidimensional measurements accurate?. Eur Radiol. 2009; 19 1809-1816
- 5 Disler D G, Marr D S, Rosenthal D I et al. Accuracy of volume measurements of computed tomography and magnetic resonance imaging phantoms by three-dimensional reconstruction and preliminary clinical application. Invest Radiol. 1994; 29 739-745
- 6 Mahr A, Levegrun S, Bahner M L et al. Usability of semiautomatic segmentation algorithms for tumor volume determination. Invest Radiol. 1999; 34 143-150
- 7 Van Hoe L, Haven F, Bellon E et al. Factors influencing the accuracy of volume measurements in spiral CT: a phantomstudy. J Comput Assist Tomogr. 1997; 21 332-338
- 8 Sohaib S A, Turner B, Hanson J A et al. CT assessment of tumour response to treatment: comparison of linear, cross-sectional and volumetricmeasures of tumoursize. Br J Radiol. 2000; 73 1178-1184
- 9 Goo J M, Tongdee T, Tongdee R et al. Volumetric measurement of synthetic lung nodules with multi-detectorrow CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy. Radiology. 2005; 235 850-856
- 10 Winer-Muram H T, Jennings S G et al. Effect of varying CT sectionwidth on volumetric measurement of lung tumors and application of compensatory equations. Radiology. 2003; 229 184-194
- 11 Kopka L, Rogalla P, Hamm B et al. Mehrschicht-Spiral-CT des Abdomens Aktuelle Indikationen und zukünftige Trends. Fortschr Röntgenstr. 2002; 174 273-282
- 12 Catalano C, Laghi A, Fraioli F et al. Pancreaticcarcinoma: the role of high-resolution multislice spiral CT in the diagnosis and assessment of respectability. Eur Radiol. 2003; 13 149-156
- 13 Soyer P, Poccard M, Boudiaf M et al. Detection of hypovascular hepatic metastases at triple-phase helical CT: sensitivity of phases and comparison with surgical and histopathologic findings. Radiology. 2004; 231 413-420
- 14 Puesken M, Juergens K U, Edenfeld A et al. Einfluss des Vaskularisationsgrades auf die automatische Segmentierung und Messung von Lebertumoren nach RECIST in einer biphasischen Multi-Slice-CT (MSCT). Fortschr Röntgenstr. 2009; 181 67-73
- 15 Keil S, Plumhans C, Behrendt F F et al. Automated measurement of lymphnodes: a phantom study. Eur Radiol. 2009; 19 1079-1086
- 16 Rohde S, Massberg M, Reinhardt J et al. Einfluss messtechnischer und morphologischer Faktoren auf die Genauigkeit der softwarebasierten MR-Tumorvolumetrie: eine Phantomstudie. Fortschr Röntgenstr. 2008; 180 654-661
- 17 Disler D G, Marr D S, Rosenthal D I. Accuracy of volume measurements of computed tomography and magnetic resonance imaging phantoms by three-dimensional reconstruction and preliminary clinical application. Invest Radiol. 1994; 29 739-745
- 18 Yim P J, Vora A V, Raghavan D et al. Volumetric analysis of liver metastases in computed tomography with the fuzzy C-means algorithm. J Comput Assist Tomogr. 2006; 30 212-220
- 19 Keil S, Behrendt F F, Stanzel S et al. RECIST and WHO criteria evaluation of cervical, thoracic and abdominal lymph nodes in patients with malignant lymphoma: manual versus semi-automated measurement on standard MDCT slices. Fortschr Röntgenstr. 2009; 181 888-895
- 20 Zhao B, Schwartz L H, Moskowitz C S et al. Pulmonary metastases: effect of CT section thickness on measurement-initial experience. Radiology. 2005; 234 934-939
- 21 Yankelevitz D F, Reeves A P, Kostis W J et al. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology. 2000; 217 251-256
- 22 Marten K, Funke M, Engelke C. Flat panel detector-based volumetric CT: prototype evaluation with volumetry of small artificial nodules in a pulmonary phantom. J Thorac Imaging. 2004; 19 156-163
- 23 Kalkmann J, Ladd S C, Greiff de A et al. Suitability of semi-automated tumor response assessment of liver metastases using a dedicated software package. Fortschr Röntgenstr. 2010; 182 581-588
Dr. Jan Holger Rothe
Klinik für Strahlenheilkunde, Charité Universitätsmedizin Berlin
Augustenburger Platz 1
13353 Berlin
Phone: ++ 49/30/4 50 65 76 67
Fax: ++ 49/30/4 50 55 79 07
Email: jan-holger.rothe@charite.de