Klin Monbl Augenheilkd 2011; 228(8): 712-723
DOI: 10.1055/s-0029-1245868
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Die Transplantation des kornealen Endothels – Möglichkeiten und Grenzen

Transplantation of Corneal Endothelium – Chances and ChallengesK. Engelmann1, 4 , M. Valtink2 , D. Lindemann3, 4 , M. Nitschke5
  • 1Augenklinik, Klinikum Chemnitz gGmbH
  • 2Institut für Anatomie, Medizinische Fakultät der TU Dresden
  • 3Institut für Virologie/Molekulare Virologie, Medizinische Fakultät der TU Dresden
  • 4CRTD/Zentrum für Regenerative Therapien Dresden/DFG-Forschungszentrum und Exzellenzcluster, TU Dresden
  • 5Biofunktionelle Polymermaterialien, Leibniz-Institut für Polymerforschung Dresden e. V.
Further Information

Publication History

Eingegangen: 5.8.2010

Angenommen: 22.10.2010

Publication Date:
23 March 2011 (online)

Zusammenfassung

Hintergrund: Die Endothel-Keratoplastik ist ein vielversprechendes Verfahren, welches den Vorteil bietet, z. B. bei Erkrankungen, die ausschließlich das korneale Endothel betreffen, lediglich den posterioren Anteil der Hornhaut zu ersetzen. Dieses Verfahren kann postoperative Astigmatismen und möglicherweise auch Abstoßungen vermeiden helfen. Methoden und Ergebnisse: Das chirurgische Verfahren konnte klinisch an einzelnen Zentren bereits gut etabliert werden. Allerdings zeigen die Publikationen zu dem Thema, dass das Problem des postoperativen Endothelzellverlusts ähnlich gravierend oder z. T. noch problematischer als bei der perforierenden Keratoplastik ist. Während die Verbesserung der chirurgischen Verfahren zur Endothel-Keratoplastik zu einer Reduzierung des Endothelzellverlusts führten, gibt es kaum zellbiologische oder gentechnische Ansätze, um den Endothelverlust von Spenderhornhäuten oder Endothellamellen ganz zu verhindern oder die Endothelzelldichte sogar zu erhöhen. Diskussion: Der Übersichtsartikel beschreibt den klinischen Stand der Endothel-Keratoplastik und beschreibt eigene und weltweite Forschungsansätze, die zukünftig helfen können, den Endothelzellverlust zu vermeiden, wie die Entwicklung geeigneter Gewebekulturbedingungen oder die genetische Manipulation des Hornhautendothels. Weiterhin werden Ansätze aus dem Bereich des Tissue Engineerings beschrieben, welche auf die Entwicklung eines transplantierbaren Endothelzell-Sheets zielen. Schlussfolgerung: Vor dem Hintergrund der begrenzten Verfügbarkeit von Spenderhornhäuten müssen zellbiologische Grundlagen des kornealen Endothels und Ansätze des Tissue Engineerings deutlich mehr in den Fokus der Forschung rücken. Methoden zur Vermeidung von Endothelzellverlusten, aber auch zur Erhöhung der Endothelzelldichte sind notwendig und erfordern interdisziplinäre Forschungsansätze.

Abstract

Background: Endothelial keratoplasty is a promising surgical procedure which may replace penetrating keratoplasty in cases of endothelial cell diseases of the cornea. This method may thereby help to prevent postoperative astigmatism and transplant rejection. Methods and Results: A survey of publications reporting about results after endothelial keratoplasty shows that the main problem of this transplantation technique is a postoperative endothelial cell loss which is comparable to or even higher than that observed in penetrating keratoplasty. Improving surgical techniques led to a reduction of the endothelial cell loss, however, cell-based strategies to prevent postoperative cell loss or to enhance the cell densities of donor corneas or endothelial lamellae are rare. Discussion: This review presents an overview of clinical results after endothelial keratoplasty. Current strategies in the field of cell biology and tissue cultivation of corneal endothelial cells, genetic manipulation of the corneal endothelium and tissue engineering strategies aiming at the production of transplantable endothelial cell sheets are described. Conclusion: The limited availability of donor corneas makes it mandatory to develop methods in the field of tissue engineering in order to improve corneal endothelial cell survival or to increase corneal endothelial cell density, using interdisciplinary approaches.

Literatur

  • 1 Bourne W M, Kaufman H E. Specular Microscopy of Human Corneal Endothelium Invivo.  Am J Ophthalmol. 1976;  81 319-323
  • 2 Waring G Or, Bourne W M, Edelhauser H F et al. The corneal endothelium. Normal and pathologic structure and function.  Ophthalmology. 1982;  89 531-590
  • 3 Bohringer D, Bohringer S, Poxleitner K et al. Long-Term Graft Survival in Penetrating Keratoplasty: The Biexponential Model of Chronic Endothelial Cell Loss Revisited.  Cornea. 2010;  1113-1117
  • 4 Lass J H, Sugar A, Benetz B A et al. Endothelial cell density to predict endothelial graft failure after penetrating keratoplasty.  Arch Ophthalmol. 2010;  128 63-69
  • 5 Bohringer D, Reinhard T, Spelsberg H et al. Influencing factors on chronic endothelial cell loss characterised in a homogeneous group of patients.  Br J Ophthalmol. 2002;  86 35-38
  • 6 Langenbucher A, Seitz B, Nguyen N X et al. Corneal endothelial cell loss after nonmechanical penetrating keratoplasty depends on diagnosis: a regression analysis.  Graefes Arch Clin Exp Ophthalmol. 2002;  240 387-392
  • 7 Melles G R, Eggink F A, Lander F et al. A surgical technique for posterior lamellar keratoplasty.  Cornea. 1998;  17 618-626
  • 8 Poinard C, Tuppin P, Loty B et al. The French national waiting list for keratoplasty created in 1999: patient registration, indications, characteristics, and turnover.  J Fr Ophtalmol. 2003;  26 911-919
  • 9 Williams K A, Muehlberg S M, Lewis R F et al. Influence of advanced recipient and donor age on the outcome of corneal transplantation. Australian Corneal Graft Registry.  Br J Ophthalmol. 1997;  81 835-839
  • 10 Melles G R, Lander F, Beekhuis W H et al. Posterior lamellar keratoplasty for a case of pseudophakic bullous keratopathy.  Am J Ophthalmol. 1999;  127 340-341
  • 11 Terry M A. Deep lamellar endothelial keratoplasty (DLEK): pursuing the ideal goals of endothelial replacement.  Eye. 2003;  17 982-988
  • 12 Terry M A, Ousley P J. Deep lamellar endothelial keratoplasty in the first United States patients: early clinical results.  Cornea. 2001;  20 239-243
  • 13 Gorovoy M S. Descemet-stripping automated endothelial keratoplasty.  Cornea. 2006;  25 886-889
  • 14 Melles G R, Wijdh R H, Nieuwendaal C P. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis).  Cornea. 2004;  23 286-288
  • 15 Price M O, Price Jr F W. Descemet’s stripping with endothelial keratoplasty: comparative outcomes with microkeratome-dissected and manually dissected donor tissue.  Ophthalmology. 2006;  113 1936-1942
  • 16 Terry M A, Ousley P J. Deep lamellar endothelial keratoplasty visual acuity, astigmatism, and endothelial survival in a large prospective series.  Ophthalmology. 2005;  112 1541-1548
  • 17 Fogla R, Padmanabhan P. Initial results of small incision deep lamellar endothelial keratoplasty (DLEK).  Am J Ophthalmol. 2006;  141 346-351
  • 18 Fogla R, Padmanabhan P. Results of deep lamellar keratoplasty using the big-bubble technique in patients with keratoconus.  Am J Ophthalmol. 2006;  141 254-259
  • 19 Ousley P J, Terry M A. Stability of vision, topography, and endothelial cell density from 1 year to 2 years after deep lamellar endothelial keratoplasty surgery.  Ophthalmology. 2005;  112 50-57
  • 20 Terry M A, Ousley P J. Small-incision deep lamellar endothelial keratoplasty (DLEK): six-month results in the first prospective clinical study.  Cornea. 2005;  24 59-65
  • 21 Terry M A, Ousley P J, Will B. A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography.  Cornea. 2005;  24 453-459
  • 22 Terry M A, Ousley P J. Deep lamellar endothelial keratoplasty: early complications and their management.  Cornea. 2006;  25 37-43
  • 23 Allan B D, Terry M A, Price Jr F W et al. Corneal transplant rejection rate and severity after endothelial keratoplasty.  Cornea. 2007;  26 1039-1042
  • 24 Lombardo M, Lombardo G, Friend D J et al. Long-term anterior and posterior topographic analysis of the cornea after deep lamellar endothelial keratoplasty.  Cornea. 2009;  28 408-415
  • 25 Yoo S H, Kymionis G D, Deobhakta A A et al. One-year results and anterior segment optical coherence tomography findings of descemet stripping automated endothelial keratoplasty combined with phacoemulsification.  Arch Ophthalmol. 2008;  126 1052-1055
  • 26 Lass J H, Gal R L, Dontchev M et al. Donor age and corneal endothelial cell loss 5 years after successful corneal transplantation. Specular microscopy ancillary study results.  Ophthalmology. 2008;  115 627-632, e628
  • 27 Albon J, Tullo A B, Aktar S et al. Apoptosis in the endothelium of human corneas for transplantation.  Invest Ophthalmol Vis Sci. 2000;  41 2887-2893
  • 28 Koh S W, Cheng J, Dodson R M et al. VIP down-regulates the inflammatory potential and promotes survival of dying (neural crest-derived) corneal endothelial cells ex vivo: necrosis to apoptosis switch and up-regulation of Bcl-2 and N-cadherin.  J Neurochem. 2009;  109 792-806
  • 29 Okumura N, Ueno M, Koizumi N et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor.  Invest Ophthalmol Vis Sci. 2009;  50 3680-3687
  • 30 Price M O, Price Jr F W. Endothelial cell loss after descemet stripping with endothelial keratoplasty influencing factors and 2-year trend.  Ophthalmology. 2008;  115 857-865
  • 31 Vajpayee R B, Agarwal T, Jhanji V et al. Modification in descemet-stripping automated endothelial keratoplasty: ”Hitch suture” technique.  Cornea. 2006;  25 1060-1062
  • 32 John T. Use of indocyanine green in deep lamellar endothelial keratoplasty.  J Cataract Refract Surg. 2003;  29 437-443
  • 33 Koenig S B, Dupps Jr W J, Covert D J et al. Simple technique to unfold the donor corneal lenticule during Descemet’s stripping and automated endothelial keratoplasty.  J Cataract Refract Surg. 2007;  33 189-190
  • 34 Yepes N, Segev F, Hyams M et al. Five-millimeter-incision deep lamellar endothelial keratoplasty: one-year results.  Cornea. 2007;  26 530-533
  • 35 Terry M A, Chen E S, Shamie N et al. Endothelial cell loss after Descemet’s stripping endothelial keratoplasty in a large prospective series.  Ophthalmology. 2008;  115 488-496, e483
  • 36 Heidemann D G, Dunn S P, Chow C Y. Comparison of deep lamellar endothelial keratoplasty and penetrating keratoplasty in patients with Fuchs endothelial dystrophy.  Cornea. 2008;  27 161-167
  • 37 Terry M A, Shamie N, Chen E S et al. Endothelial keratoplasty: the influence of preoperative donor endothelial cell densities on dislocation, primary graft failure, and 1-year cell counts.  Cornea. 2008;  27 1131-1137
  • 38 Koenig S B, Covert D J, Dupps Jr W J et al. Visual acuity, refractive error, and endothelial cell density six months after Descemet stripping and automated endothelial keratoplasty (DSAEK).  Cornea. 2007;  26 670-674
  • 39 Nieuwendaal C P, Lapid-Gortzak R, Meulen I J et al. Posterior lamellar keratoplasty using descemetorhexis and organ-cultured donor corneal tissue (Melles technique).  Cornea. 2006;  25 933-936
  • 40 Bourne W M, Hodge D O, Nelson L R. Corneal endothelium five years after transplantation.  Am J Ophthalmol. 1994;  118 185-196
  • 41 Chung S H, Kim H K, Kim M S. Corneal endothelial cell loss after penetrating keratoplasty in relation to preoperative recipient endothelial cell density.  Ophthalmologica. 2010;  224 194-198
  • 42 Nguyen N X, Pham H N, Langenbucher van der A et al. Impact of short-term versus longterm topical steroid treatment on ‘idiopathic’ endothelial cell loss after normal-risk penetrating keratoplasty.  Acta Ophthalmol Scand. 2007;  85 209-212
  • 43 Reinhard T, Bohringer D, Enczmann J et al. HLA class I/II matching and chronic endothelial cell loss in penetrating normal risk keratoplasty.  Acta Ophthalmol Scand. 2004;  82 13-18
  • 44 Koizumi N, Sakamoto Y, Okumura N et al. Cultivated corneal endothelial cell sheet transplantation in a primate model.  Invest Ophthalmol Vis Sci. 2007;  48 4519-4526
  • 45 Proulx S, Bensaoula T, Nada O et al. Transplantation of a tissue-engineered corneal endothelium reconstructed on a devitalized carrier in the feline model.  Invest Ophthalmol Vis Sci. 2009;  50 2686-2694
  • 46 Bednarz J, Doubilei V, Wollnik P C et al. Effect of three different media on serum free culture of donor corneas and isolated human corneal endothelial cells.  Br J Ophthalmol. 2001;  85 1416-1420
  • 47 Engelmann K, Böhnke M. Human corneal endothelial cells in long-term cultures: The influence of conditions for isolation, selective and normal growth and the extracellular matrix on proliferation and morphology.  Chibret Int J Ophthalmol. 1990;  7 3-13
  • 48 Engelmann K, Friedl P. Optimization of culture conditions for human corneal endothelial cells.  In Vitro Cell Dev Biol. 1989;  25 1065-1072
  • 49 Engelmann K, Friedl P. Growth of human corneal endothelial cells in a serum-reduced medium.  Cornea. 1995;  14 62-70
  • 50 Hempel B, Bednarz J, Engelmann K. Use of a serum-free medium for long-term storage of human corneas. Influence on endothelial cell density and corneal metabolism.  Graefes Arch Clin Exp Ophthalmol. 2001;  239 801-805
  • 51 Møller-Pedersen T, Hartmann U, Ehlers N et al. Evaluation of potential organ culture media for eye banking using a human corneal endothelial cell growth assay.  Graefes Arch Clin Exp Ophthalmol. 2001;  239 778
  • 52 Moller-Pedersen T, Hartmann U, Moller H J et al. Evaluation of potential organ culture media for eye banking using human donor corneas.  Br J Ophthalmol. 2001;  85 1075-1079
  • 53 Bednarz J, Weich H A, Rodokanaki-Schrenck von A et al. Expression of genes coding growth factors and growth factor receptors in differentiated and dedifferentiated human corneal endothelial cells.  Cornea. 1995;  14 372-381
  • 54 Rieck P, Oliver L, Engelmann K et al. The role of exogenous/endogenous basic fibroblast growth factor (FGF2) and transforming growth factor beta (TGF beta-1) on human corneal endothelial cells proliferation in vitro.  Exp Cell Res. 1995;  220 36-46
  • 55 Jäckel T, Knels L, Valtink M et al. Serum-free SFM corneal organ culture medium but not conventional MEM organ culture medium protects human corneal endothelial cells from apoptotic and necrotic cell death.  Br J Ophthalmol. 2010;  :in press
  • 56 Reinhard T, Bohringer D, Huschen D et al. Chronic endothelial cell loss of the graft after penetrating keratoplasty: influence of endothelial cell migration from graft to hos].  Klin Monatsbl Augenheilkd. 2002;  219 410-416
  • 57 Senoo T, Joyce N C. Cell cycle kinetics in corneal endothelium from old and young donors.  Invest Ophthalmol Vis Sci. 2000;  41 660-667
  • 58 Bednarz J, Rodokanaki-Schrenck von A, Engelmann K. Different characteristics of endothelial cells from central and peripheral human cornea in primary culture and after subculture.  In Vitro Cell Dev Biol Anim. 1998;  34 149-153
  • 59 Engelmann K, Bohnke M, Friedl P. Isolation and long-term cultivation of human corneal endothelial cells.  Invest Ophthalmol Vis Sci. 1988;  29 1656-1662
  • 60 Joyce N C, Zhu C C. Human corneal endothelial cell proliferation: potential for use in regenerative medicine.  Cornea. 2004;  23 S8-S19
  • 61 Joyce N C, Meklir B, Joyce S J et al. Cell cycle protein expression and proliferative status in human corneal cells.  Invest Ophthalmol Vis Sci. 1996;  37 645-655
  • 62 Joyce N C, Zhu C C, Harris D L. Relationship among oxidative stress, DNA damage, and proliferative capacity in human corneal endothelium.  Invest Ophthalmol Vis Sci. 2009;  50 2116-2122
  • 63 McGowan S L, Edelhauser H F, Pfister R R et al. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas.  Mol Vis. 2007;  13 1984-2000
  • 64 Whikehart D R, Parikh C H, Vaughn A V et al. Evidence suggesting the existence of stem cells for the human corneal endothelium.  Mol Vis. 2005;  11 816-824
  • 65 Alvarado J A, Gospodarowicz D, Greenburg G. Corneal endothelial replacement. I. In vitro formation of an endothelial monolayer.  Invest Ophthalmol Vis Sci. 1981;  21 300-316
  • 66 Jumblatt M M, Maurice D M, McCulley J P. Transplantation of tissue-cultured corneal endothelium.  Invest Ophthalmol Vis Sci. 1978;  17 1135-1141
  • 67 Maurice D M, McCulley J P, Perlman M M. Development in use of cultured endothelium in corneal transplantation.  Doc Ophthalmol Proc Ser. 1979;  20 151-153
  • 68 McCulley J P, Maurice D M, Schwartz B D. Corneal endothelial transplantation.  Ophthalmology. 1980;  87 194-201
  • 69 Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical implications for human studies.  Proc Natl Acad Sci U S A. 1979;  76 464-468
  • 70 Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to species with nonregenerative endothelium. The cat as an experimental model.  Arch Ophthalmol. 1979;  97 2163-2169
  • 71 Gospodarowicz D, Greenburg G. The coating of bovine and rabbit corneas denuded of their endothelium with bovine corneal endothelial cells.  Exp Eye Res. 1979;  28 249-265
  • 72 Schwartz B D, McCulley J P. Morphology of transplanted corneal endothelium derived from tissue culture.  Invest Ophthalmol Vis Sci. 1981;  20 467-480
  • 73 Insler M S, Lopez J G. Extended incubation times improve corneal endothelial cell transplantation success.  Invest Ophthalmol Vis Sci. 1991;  32 1828-1836
  • 74 Joyce N C, Meklir B, Neufeld A H. In vitro pharmacologic separation of corneal andothelial migration and spreading responses.  Invest Ophthalmol Vis Sci. 1990;  31 1816-1826
  • 75 Engelmann K, Drexler D, Bohnke M. Transplantation of adult human or porcine corneal endothelial cells onto human recipients in vitro. Part I: Cell culturing and transplantation procedure.  Cornea. 1999;  18 199-206
  • 76 Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation.  Exp Eye Res. 2004;  78 573-578
  • 77 Engelmann K, Drexler D, Draeger J et al. Endothelial cell transplantation in a model.  Ophthalmologe. 1993;  90 166-170
  • 78 Engelmann K, Bednarz J, Bohnke M. Endothelial cell transplantation and growth behavior of the human corneal endothelium.  Ophthalmologe. 1999;  96 555-562
  • 79 Bohnke M, Eggli P, Engelmann K. Transplantation of cultured adult human or porcine corneal endothelial cells onto human recipients in vitro. Part II: Evaluation in the scanning electron microscope.  Cornea. 1999;  18 207-213
  • 80 Aboalchamat B, Engelmann K, Bohnke M et al. Morphological and functional analysis of immortalized human corneal endothelial cells after transplantation.  Exp Eye Res. 1999;  69 547-553
  • 81 Chen K H, Azar D, Joyce N C. Transplantation of adult human corneal endothelium ex vivo: a morphologic study.  Cornea. 2001;  20 731-737
  • 82 Joo C K, Green W R, Pepose J S et al. Repopulation of denuded murine Descemet’s membrane with life-extended murine corneal endothelial cells as a model for corneal cell transplantation.  Graefes Arch Clin Exp Ophthalmol. 2000;  238 174-180
  • 83 Smith A J, Bainbridge J W, Ali R R. Prospects for retinal gene replacement therapy.  Trends Genet. 2009;  25 156-165
  • 84 Mohan R R, Sharma A, Netto M V et al. Gene therapy in the cornea.  Prog Retin Eye Res. 2005;  24 537-559
  • 85 McAlister J C, Joyce N C, Harris D L et al. Induction of Replication in Human Corneal Endothelial Cells by E 2F2 Transcription Factor cDNA Transfer.  Invest Ophthalmol Vis Sci. 2005;  46 3597-3603
  • 86 Williams K A, Jessup C F, Coster D J. Gene therapy approaches to prolonging corneal allograft survival.  Expert Opin Biol Ther. 2004;  4 1059-1071
  • 87 Bednarz J, Teifel M, Friedl P et al. Immortalization of human corneal endothelial cells using electroporation protocol optimized for human corneal endothelial and human retinal pigment epithelial cells.  Acta Ophthalmol Scand. 2000;  78 130-136
  • 88 Collins L, Fabre J W. A synthetic peptide vector system for optimal gene delivery to corneal endothelium.  J Gene Med. 2004;  6 185-194
  • 89 Dannowski H, Bednarz J, Reszka R et al. Lipid-mediated gene transfer of acidic fibroblast growth factor into human corneal endothelial cells.  Exp Eye Res. 2005;  80 93-101
  • 90 Shewring L, Collins L, Lightman S L et al. A nonviral vector system for efficient gene transfer to corneal endothelial cells via membrane integrins.  Transplantation. 1997;  64 763-769
  • 91 Tan P H, Manunta M, Ardjomand N et al. Antibody targeted gene transfer to endothelium.  J Gene Med. 2003;  5 311-323
  • 92 George A J, Arancibia-Carcamo C V, Awad H M et al. Gene delivery to the corneal endothelium.  Am J Respir Crit Care Med. 2000;  162 S194-S200
  • 93 Larkin D F, Oral H B, Ring C J et al. Adenovirus-mediated gene delivery to the corneal endothelium.  Transplantation. 1996;  61 363-370
  • 94 Bertelmann E, Ritter T, Vogt K et al. Efficiency of Cytokine Gene Transfer in Corneal Endothelial Cells and Organ-Cultured Corneas Mediated by Liposomal Vehicles and Recombinant Adenovirus.  Ophthal Res. 2003;  35 117
  • 95 Pleyer U, Bertelmann E, Rieck P et al. Survival of corneal allografts following adenovirus-mediated gene transfer of interleukin-4.  Graefes Arch Clin Exp Ophthalmol. 2000;  238 531
  • 96 Jessup C F, Brereton H M, Coster D J et al. In vitro adenovirus mediated gene transfer to the human cornea.  Br J Ophthalmol. 2005;  89 658-661
  • 97 Bainbridge J WB, Stephens C, Parsley K et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium.  Gene Ther. 2001;  8 1665-1668
  • 98 Challa P, Luna C, Liton P B et al. Lentiviral mediated gene delivery to the anterior chamber of rodent eyes.  Mol Vis. 2005;  11 425-430
  • 99 Parker D GA, Kaufmann C, Brereton H M et al. Lentivirus-mediated gene transfer to the rat, ovine and human cornea.  Gene Ther. 2007;  14 760-767
  • 100 Beutelspacher S C, Ardjomand N, Tan P H et al. Comparison of HIV-1 and EIAV-based lentiviral vectors in corneal transduction.  Exp Eye Res. 2005;  80 787-794
  • 101 Suh L H, Zhang C, Chuck R S et al. Cryopreservation and Lentiviral-Mediated Genetic Modification of Human Primary Cultured Corneal Endothelial Cells.  Invest Ophthalmol Vis Sci. 2007;  48 3056-3061
  • 102 Derksen T A, Sauter S L, Davidson B L. Feline immunodeficiency virus vectors. Gene transfer to mouse retina following intravitreal injection.  J Gene Med. 2002;  4 463-469
  • 103 Engelmann K, Valtink M, Lindemann D et al. HMW FGF-2 Mediates Cell Rescue After Retroviral Gene Transfer To Human Corneal Endothelial Cells.  Investigative Ophthalmology and Visual Science. 2009;  50 ARVO E-Abstract 1732
  • 104 Valtink M, Lindemann D, Engelmann K et al. Retroviral Gene Transfer To Human Corneal Endothelial Cells: Toxic Side Effect And Rescue By FGF-2. 2nd ISOCB Meeting San Diego, USA; 2008
  • 105 Valtink M. Retroviraler Gentransfer in humane corneale Endothelzellen in vitro: Transduktion mit hFGF-2. Dresden: TU Dresden; 2010: 88
  • 106 Chen E S, Shamie N, Terry M A et al. Endothelial keratoplasty: improvement of vision after healthy donor tissue exchange.  Cornea. 2008;  27 279-282
  • 107 Blake D A, Yu H N, Young D L et al. Matrix stimulates the proliferation of human corneal endothelial cells in culture.  Invest Ophthalmol Vis Sci. 1997;  38 1119-1129
  • 108 Amano S. Transplantation of cultured human corneal endothelial cells.  Cornea. 2003;  22 S66-S74
  • 109 Ma D HK, Yao J Y, Yeh L K et al. In vitro antiangiogenic activity in ex vivo expanded human limbocorneal epithelial cells cultivated on human amniotic membrane.  Invest Ophthalmol Vis Sci. 2004;  45 2586-2595
  • 110 Ishino Y, Sano Y, Nakamura T et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation.  Invest Ophthalmol Vis Sci. 2004;  45 800-806
  • 111 da Silva R M, Mano J F, Reis R L. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries.  Trends Biotechnol. 2007;  25 577-583
  • 112 Ide T, Nishida K, Yamato M et al. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes.  Biomaterials. 2006;  27 607-614
  • 113 Nitschke M, Gramm S, Gotze T et al. Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets.  J Biomed Mater Res A. 2007;  80 1003-1010
  • 114 Gotze T, Valtink M, Nitschke M et al. Cultivation of an immortalized human corneal endothelial cell population and two distinct clonal subpopulations on thermo-responsive carriers.  Graefes Arch Clin Exp Ophthalmol. 2008;  246 1575-1583
  • 115 Hsiue G H, Lai J Y, Chen K H et al. A Novel Strategy for Corneal Endothelial Reconstruction with a Bioengineered Cell Sheet.  Transplantation. 2006;  81 473-476
  • 116 Lai J Y, Li Y T. Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers.  Biomacromolecules. 2010;  11 1387-1397
  • 117 Hadlock T, Singh S, Vacanti J P et al. Ocular cell monolayers cultured on biodegradable substrates.  Tissue Eng. 1999;  5 187-196
  • 118 Van Horn D L, Sendele D D, Seideman S et al. Regenerative capacity of the corneal endothelium in rabbit and cat.  Invest ophthalmol Vis Sci. 1977;  16 597-613
  • 119 Doillon C J, Watsky M A, Hakim M et al. A collagen-based scaffold for a tissue engineered human cornea: Physical and physiological properties.  Int J Artif Organs. 2003;  26 764-773
  • 120 Orwin E J, Hubel A. In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix.  Tissue Eng. 2000;  6 307-319
  • 121 Reichl S, Bednarz J, Muller-Goymann C C. Human corneal equivalent as cell culture model for in vitro drug permeation studies.  Br J Ophthalmol. 2004;  88 560-565
  • 122 Reichl S, Döhring S, Bednarz J et al. Human cornea construct HCC – an alternative for in vitro permeation studies? A comparison with human donor corneas.  Eur J Pharm Biopharm. 2005;  60 305
  • 123 Vrana N E, Builles N, Justin V et al. Development of a Reconstructed Cornea from Collagen-Chondroitin Sulfate Foams and Human Cell Cultures.  Invest Ophthalmol Vis Sci. 2008;  49 5325-5331
  • 124 Zorn-Kruppa M, Tykhonova S, Belge G et al. A human corneal equivalent constructed from SV 40-immortalised corneal cell lines.  Altern Lab Anim. 2005;  33 37-45

Prof. Dr. Katrin Engelmann

Augenklinik, Klinikum Chemnitz gGmbH

Flemmingstr. 2

09116 Chemnitz

Phone: ++ 49/3 71/33 33 32 30

Fax: ++ 49/3 71/33 33 32 23

Email: k.engelmann@skc.de