Rofo 2011; 183(3): 251-259
DOI: 10.1055/s-0029-1245884
Interventionelle Radiologie

© Georg Thieme Verlag KG Stuttgart · New York

Ex-Vivo Human Lung Tumor Model: Use for Temperature Measurements during Thermal Ablation of NSCLC

Humanes Ex-vivo-Lungentumormodell: Nutzung für Temperaturmessungen während der Thermoablation von NSCLCF. Koch1 , A. Vietze1 , U. Laskowski2 , C. Ritter3 , A. Linder4 , N. Hosten1
  • 1Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universität Greifswald
  • 2Thoracic Surgery, Märkische Kliniken Lüdenscheid
  • 3Pharmacology, Ernst-Moritz-Arndt-Universität Greifswald
  • 4Thoracic Surgery, Klinikum Bremen-Ost
Further Information

Publication History

received: 25.11.2009

accepted: 16.10.2010

Publication Date:
17 December 2010 (online)

Zusammenfassung

Ziel: In dieser Studie wurde ein menschliches Ex-vivo-Lungenkrebsmodell verwendet, um die Temperaturentwicklung bei der Ablation mit 1 Laserfaser mit der Entwicklung beim Gebrauch von 2 Laserfasern zu vergleichen. Zudem wurde untersucht, ob die Temperaturdiffusion in normalem Lungengewebe von dem in Tumorgewebe abweicht. Material und Methoden: 48 Lungenpräparate, die nichtkleinzellige Bronchialkarzinome enthielten, wurden mit dem Ventilations- und Perfusionsmodell verbunden und mit 1 (22 Präparate, Gruppe 1) oder, in einer zweiten Phase, mit 1 (13 Präparate, Gruppe 2) oder 2 Laserfasern (13 Präparate, Gruppe 3) behandelt. Während der Ablation des Tumors wurde die Temperatur alle 5 s interstitiell gemessen. Ergebnisse: Eine Laserbehandlung und die Temperaturkontrolle war in allen Fällen technisch durchführbar. 30 min nach dem Beginn der Laserung mit 1 Faser wurde in 10 mm Entfernung von dieser eine Temperatur von 61 ± 17 °C in Gruppe 1 und von 74 ± 11 °C in Gruppe 2 erreicht (p = 0,1). In der Mitte zwischen 2 Laserfasern, die 20 mm voneinander entfernt waren, wurde eine Temperatur von 93 ± 7 °C erreicht. Nach 20-minütiger Ablation wurde in normalem Lungengewebe eine Temperatur von 77 ± 15 °C in 10 mm Entfernung erreicht. Schlussfolgerung: Das Ex-vivo-Modell ermöglicht die Durchführung der laserinduzierten Thermotherapie an einer perfundierten und ventilierten Lunge. Der Einsatz einer zweiten Laserfaser erhöht die Temperatur signifikant (p < 0,05). Die Temperaturentwicklung in normaler Lunge unterscheidet sich nicht signifikant von der in Tumorgewebe (p = 0,24).

Abstract

Purpose: In the present study we used an ex-vivo human lung cancer model to compare temperature diffusion during thermal ablation using one laser fiber to that of a two-fiber approach. Furthermore, we examined whether there was a difference between temperature diffusion in normal lung tissue and tumor tissue during laser ablation. Materials and Methods: 48 resected lung specimens containing non-small cell lung cancer were connected to a perfusion/ventilation apparatus and treated with 1 (22 specimens, group 1) or, in a second experiment, with 1 (13 specimens, group 2) or 2 (13 specimens, group 3) laser fibers. During tumor ablation, temperatures were measured interstitially every 5 sec. Laser ablation was followed by the taking of samples of 13 specimens for histological examination. For comparison we performed laser ablation in 7 specimens with normal lung tissue. Results: Laser treatment and temperature control were technically feasible in all samples. Thirty min after starting laser ablation with 1 fiber, a temperature of 61 ± 17 °C was achieved in group 1 at a distance of 10 mm from the laser fiber and a temperature of 74 ± 11 °C was achieved in group 2 (p = 0.1). In the middle between two active laser fibers placed 20 mm apart, a temperature of 93 ± 7 °C was achieved. The temperature reached in normal lung tissue after 20 min of laser ablation was 77 ± 15 °C at a distance of 10 mm from the laser fiber. Conclusion: The ex-vivo model allowed performance of laser-induced thermal ablation in the perfused and ventilated lung. The use of two laser fibers increases the achieved temperatures significantly (p < 0.05). Temperatures reached in normal lung tissue were as high as in tumor tissue (p = 0.24).

References

  • 1 Goldberg S N, Gazelle G S, Compton C C et al. Radiofrequency tissue ablation in the rabbit lung: efficacy and complications.  Acad Radiol. 1995;  2 776-784
  • 2 Goldberg S H, Gazelle G S, Comptom C C et al. Radio-frequency tissue ablation of VX 2 tumor nodules in rabbit lung.  Acad Radiol. 1996;  3 929-935
  • 3 Dupuy D E, Zagoria R J, Akerley W et al. Percutaneous radiofrequency ablation of malignancies in the lung.  AJR. 2000;  174 57-59
  • 4 Suh R, Wallace A, Sheehan R et al. Unresectable pulmonary malignancies: CT-guided percutaneous radiofrequency ablation – preliminary results.  Radiology. 2003;  229 821-829
  • 5 Lee J M, Jin G Y, Goldberg S N et al. Percutaneous radiofrequency ablation for inoperable non-small cell lung cancer and metastases: preliminary report.  Radiology. 2004;  230 125-134
  • 6 Hosten N, Stier A, Weigel C et al. Laser-induced thermotherapy (LITT) of lung metastases: description of a miniaturized applicator, optimization, and initial treatment of patients.  Fortschr Röntgenstr. 2003;  175 393-400
  • 7 Morrison P R, Sonnenberg van E, Shankar S et al. Radiofrequency ablation of thoracic lesions: part 1, experiments in the normal porcine thorax.  AJR. 2005;  184 375-380
  • 8 Wacker F K, Nour S G, Eisenberg R et al. MRI-guided radiofrequency thermal ablation of normal lung tissue: in vivo study in a rabbit model.  AJR. 2004;  183 599-603
  • 9 Linder A, Friedel G, Fritz P et al. The ex-vivo isolated, perfused human lung model: description and potential applications.  Thorac Cardiovasc Surg. 1996;  44 140-146
  • 10 Goldberg S N, Grassi C J, Cardella J F et al. Image-guided tumor ablation: standardization of terminology and reporting criteria.  Radiology. 2005;  235 728-739
  • 11 Horner M J, Ries L AG, Krapcho M et al. SEER Cancer Statistics Review, 1975 – 2006, National Cancer Institute. Bethesda, MD; http://seer.cancer.gov/csr/ 1975_2006 / based on November 2008 SEER data submission, posted to the SEER web site, last visited: 22.6.2009
  • 12 Vogl T J, Straub R, Eichler K et al. Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: experience with complications in 899 Patients (2,520 lesions).  Radiology. 2002;  225 367-377
  • 13 Eickmeyer F, Schwarzmaier H J, Müller F P et al. Survival after laser-induced interstitial thermotherapy of colorectal liver metastases – a comparison of first clinical experiences with current therapy results.  Fortschr Röntgenstr. 2008;  180 35-41
  • 14 Bruners P, Schmitz-Rode T, Günther R W et al. Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary results.  Fortschr Röntgenstr. 2008;  180 216-22
  • 15 Clasen S, Krober S M, Kosan B et al. Pathomorphologic Evaluation of Pulmonary Radiofrequency Ablation: Proof of Cell Death Is Characterized by DNA Fragmentation and Apoptotic Bodies.  Cancer. 2008;  113 3121-3129
  • 16 Yamamoto A, Nakamura K, Matsuoka T et al. Radiofrequency Ablation in a Porcine Lung Model: Correlation Between CT and Histopathologic Findings.  AJR. 2005;  185 1299-1306
  • 17 Cernicanu A, Lepetit-Coiffé M, Viallon M et al. New horizons in MR-controlled and monitored radiofrequency ablation of liver tumours.  Cancer Imaging. 2007;  7 160-166
  • 18 Kühn J P, Puls R, Wallaschowski H et al. Characteristics of necrosis after laser-induced thermotherapy in contrast-enhanced MRI and implications for treatment success.  Fortschr Röntgenstr. 2008;  180 816-820
  • 19 Lee J M, Youk J H, Kim Y K et al. Radio-frequency thermal ablation with hypertonic saline solution injection of the lung: ex vivo and in vivo feasibility studies.  Eur Radiology. 2003;  13 2540-2547
  • 20 Liu S YW, Lee K F, Lai P BS. Needle track seeding: a real hazard after percutaneous radiofrequency ablation for colorectal liver tumors.  World J Gastroenterol. 2009;  15 1653-1655
  • 21 Imamura J, Tateishi R, Shiina S et al. Neoplastic seeding after radiofrequency ablation for hepatocellular carcinoma.  Am J Gastroenterol. 2008;  103 3057-3062
  • 22 Ahmed M, Liu Z, Afzal K M et al. Radiofrequency Ablation: effect of surrounding tissue composition on coagulation necrosis in a canine tumor model.  Radiology. 2004;  230 761-767
  • 23 Haasbeek C JA, Senan S, Smit E F et al. Critical review of non-surgical treatment options for stage I non-small cell lung cancer.  The Oncologist. 2008;  13 309-319
  • 24 Zhu J C, Yan T D, Morris D L. A systematic review of RFA for lung tumors.  Annals of Surgical Oncology. 2008;  15 1765-1774
  • 25 Gillams A. Lung tumor ablation – where are we now.  Cancer Imaging. 2008;  8 116-117
  • 26 Germer C T, Isbert C, Roggan A. et al .Experimentelle Grundlagen der LITT – Energie und Temperaturfindung zur vollständigen Ablation experimenteller Lebertumoren und potenzielle Ursachen einer Tumorrezidiventstehung. In Vogl T J, Mack M G, Balzer J O Lebermetastasen, Diagnose – Intervention – Therapie. Berlin, Heidelberg, New York: Springer; 2001: 221-235
  • 27 Goldberg S N, Gazelle G S, Compton C C et al. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation.  Cancer. 2000;  88 2452-2463

Miss Franziska Koch

Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universität Greifswald

Sauerbruchstraße

17487 Greifswald

Germany

Phone: ++ 49/38 34/86 69 60

Fax: ++ 49/38 34/86 70 97

Email: franzi_koch@hotmail.com