Fortschr Neurol Psychiatr 2011; 79(2): 83-91
DOI: 10.1055/s-0029-1245937
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Die Relevanz einer B-Zell-abhängigen Immunpathologie für die Multiple Sklerose

The Significance of a B Cell-Dependent Immunopathology in Multiple SclerosisS. Kuerten1 , R. Pauly1 , S. Blaschke1 , A. Rottlaender1 , C. C. Kaiser2 , M. Schroeter2 , G. R. Fink2 , K. Addicks1
  • 1Anatomie I, Universität zu Köln
  • 2Klinik und Poliklinik für Neurologie, Universitätsklinikum Köln
Further Information

Publication History

Publication Date:
20 January 2011 (online)

Zusammenfassung

Die Immunpathologie der Multiplen Sklerose (MS) ist bis heute nicht vollständig verstanden. Im Mittelpunkt der vorliegenden Arbeit stehen die B-Lymphozyten, die als Produzenten von Autoantikörpern und durch die Fähigkeit zur Präsentation von Antigenen eine Schlüsselstellung einnehmen können, jedoch bislang in ihrer Bedeutung für die MS unterschätzt wurden. Auch wird die Bildung von ektopen B-Zell-Follikeln im ZNS und deren mögliche Korrelation mit dem Krankheitsverlauf und Schweregrad diskutiert. Nicht zuletzt sollen regulatorische Aspekte einer B-Zell-abhängigen Pathologie erwähnt werden. Ein umfassendes Verständnis der komplexen Immunprozesse der MS kann Therapien hervorbringen, die spezifisch in die Pathogenese eingreifen. Ansatzpunkte einer B-Zell-orientierten Therapie werden im Folgenden erörtert. Insgesamt soll dieser Übersichtsartikel dazu anstoßen, bestehende Paradigmen der Erkrankung zu überdenken und die Rolle der B-Lymphozyten bei der MS zu würdigen.

Abstract

In spite of keen clinical and neuroscientific interest, the aetiology and immunopathology of multiple sclerosis (MS) remain to be elucidated. The present work seeks to give insight into the important, but thus far underestimated contribution of B cells to the disease. Emphasis will be placed on the role of B cells as producers of autoantibodies and as antigen presenting cells. In addition, the development of ectopic B cell follicles in the CNS and their potential correlation with the course of the disease and MS severity will be discussed. Finally, regulatory functions of a B cell-dependent immunopathology should be mentioned. A better understanding of the complex pathomechanisms of MS will allow for therapeutic options that are causative. Potential targets of a B cell-oriented therapy will be delineated in the following review. We hereby aim at triggering a critical re-evaluation of traditional paradigms assigned to MS, appreciating the importance of B cells in the disease.

Literatur

  • 1 Batoulis H, Addicks K, Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD 4 /T(H)1 paradigm.  Ann Anat. 2010;  192 179-193
  • 2 Lassmann H, Ransohoff R M. The CD 4-Th1 model for multiple sclerosis: a critical re-appraisal.  Trends Immunol. 2004;  25 132-137
  • 3 Awad A, Hemmer B, Hartung H P et al. Analyses of cerebrospinal fluid in the diagnosis and monitoring of multiple sclerosis.  J Neuroimmunol. 2010;  219 1-7
  • 4 Luque F A, Jaffe S L. Cerebrospinal fluid analysis in multiple sclerosis.  Int Rev Neurobiol. 2007;  79 341-56
  • 5 Sospedra M, Martin R. Immunology of multiple sclerosis.  Annu Rev Immunol. 2005;  23 683-747
  • 6 Franciotta D, Salvetti M, Lolli F et al. B cells and multiple sclerosis.  Lancet Neurol. 2008;  7 852-858
  • 7 Bielekova B, Becker B. Monoclonal antibodies in MS – Mechanisms of action.  Neurology. 2010;  74 (Suppl 1) S31-S40
  • 8 Owens G P, Bennett J L, Lassmann H et al. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid.  Ann Neurol. 2009;  65 639-649
  • 9 Reindl M, Linington C, Brehm U et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study.  Brain. 1999;  122 2047-2056
  • 10 Reindl M, Khalil M, Berger T. Antibodies as biological markers for pathophysiological processes in MS.  J Neuroimmunol. 2006;  180 50-62
  • 11 Büdingen H C, Harrer M D, Kuenzle von S et al. Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific antibodies.  Eur J Immunol. 2008;  38 2014-2023
  • 12 Büdingen H C, Gulati von M, Kuenzle S et al. Clonally expanded plasma cells in the cerebrospinal fluid of patients with central nervous system autoimmune demyelination produce „oligoclonal bands”.  J Neuroimmunol. 2010;  218 134-139
  • 13 Magliozzi R, Howell O, Vora A et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology.  Brain. 2007;  130 1089-1104
  • 14 Keegan M, König F, McClelland R et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange.  Lancet. 2005;  366 579-582
  • 15 Hauser S L, Waubant E, Arnold D L et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis.  N Engl J Med. 2008;  358 676-688
  • 16 Schröder A, Ellrichmann G, Chehab G et al. Einsatz von Rituximab in der Behandlung neuroimmunologischer Erkrankungen.  Nervenarzt. 2009;  80 155-165
  • 17 Buttmann M. Treating multiple sclerosis with monoclonal antibodies: a 2010 update.  Expert Rev Neurother. 2010;  10 791-809
  • 18 Rivers T M, Schwentker F F. Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys.  J Exp Med. 1935;  61 689-702
  • 19 Kabat E A, Moore D H, Landow H. An electrophoretic study of the protein components in cerebrospinal fluid and the relationship to the serum proteins.  J Clin Invest. 1942;  21 571-577
  • 20 Link H, Baig S, Jiang Y P et al. B cells and antibodies in MS.  Res Immunol. 1989;  140 219-226
  • 21 Bernard C C, Rosbo N K. Immunopathological recognition of autoantigens in multiple sclerosis.  Acta Neurol. 1991;  13 171-178
  • 22 Menon de K, Piddlesden S J, Bernard C C. Demyelinating antibodies to myelin oligodendrocyte glycoprotein and galactocerebroside induce degradation of myelin basic protein in isolated human myelin.  J Neurochem. 1997;  69 214-222
  • 23 Van der Goes A, Kortekaas M, Hoekstra K et al. The role of anti-myelin (auto)-antibodies in the phagocytosis of myelin by macrophages.  J Neuroimmunol. 1999;  101 61-67
  • 24 Ponomarenko N A, Durova O M, Vorobiev I I et al. Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen.  Proc Natl Acad Sci U S A. 2006;  103 281-286
  • 25 Karthigasan J, Garvey J S, Ramamurthy G V et al. Immunolocalization of 17 and 21.5 kDa MBP isoforms in compact myelin and radial component.  J Neurocytol. 1996;  25 1-7
  • 26 Wucherpfennig K W. Autoimmunity in the central nervous system: mechanisms of antigen presentation and recognition.  Clin Immunol Immunopathol. 1994;  72 293-306
  • 27 Yamamoto Y, Yoshikawa H, Nagano S et al. Myelin-associated oligodendrocytic basic protein is essential for normal arrangement of the radial component in central nervous system myelin.  Eur J Neurosci. 1998;  11 847-855
  • 28 Lehmann P V, Forsthuber T, Miller A et al. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen.  Nature. 1992;  358 155-157
  • 29 Popot J L, Pham Dinh D, Dautigny A. Major Myelin proteolipid: the 4-alpha-helix topology.  J Membr Biol. 1991;  120 233-246
  • 30 Schliess F, Stoffel W. Evolution of the myelin integral membrane proteins of the central nervous system.  Biol Chem Hoppe Seyler. 1991;  372 865-874
  • 31 Tumani H, Hartung H P, Hemmer B et al. Cerebrospinal fluid biomarkers in multiple sclerosis.  Neurobiol Dis. 2009;  35 117-127
  • 32 Ehling R, Lutterotti A, Wanschitz J et al. Increased frequencies of serum antibodies to neurofilament light in patients with primary chronic progressive multiple sclerosis.  Mult Scler. 2004;  10 601-606
  • 33 Silber E, Semra Y K, Gregson N A et al. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit.  Neurology. 2002;  58 1372-1381
  • 34 Sadatipour B T, Greer J M, Pender M P. Increased circulating antiganglioside antibodies in primary and secondary progressive multiple sclerosis.  Ann Neurol. 1998;  44 980-983
  • 35 Banki K, Colombo E, Sia F et al. Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple sclerosis.  J Exp Med. 1994;  180 1649-1663
  • 36 Mathey E K, Derfuss T, Storch M K et al. Neurofascin as novel target for antibody mediated axonal injury.  J Exp Med. 2007;  204 2363-2372
  • 37 Menge T, Lalive P H, Budingen H C et al. Antibody responses against galactocerebroside are potential stage-specific biomarkers in multiple sclerosis.  J Allergy Clin Immunol. 2005;  116 453-459
  • 38 Villar L M, Sadaba M C, Roldan von E et al. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS.  J Clin Invest. 2005;  115 187-194
  • 39 Silber E, Semra Y K, Gregson N A et al. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit.  Neurology. 2002;  58 1372-1381
  • 40 Eikelenboom M J, Petzold A, Lazeron R H et al. Multiple sclerosis: Neurofilament light chain antibodies are correlated to cerebral atrophy.  Neurology. 2003;  60 219-223
  • 41 Sidén A. Isoelectric focusing and crossed immunoelectrofocusing of CSF immunoglobulins in MS.  J Neurol. 1979;  221 39-51
  • 42 Link H, Huang Y M. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness.  J Neuroimmunol. 2007;  180 17-28
  • 43 Vaheri A, Keski-Oja J, Salonen E M et al. Cerebrospinal fluid IgG bands and virus-specific IgG, IgM, and IgA antibodies in herpes simplex virus encephalitis.  J Neuroimmunol. 1982;  3 247-261
  • 44 Stanek G. Laboratory diagnosis and seroepidemiology of Lyme borreliosis.  Infection. 1991;  19 263-267
  • 45 Ceroni M, Camana C, Franciotta D M et al. Specific activation of B-cell clones within the central nervous system in course of herpes simplex encephalitis.  Boll Soc Ital Biol Sper. 1990;  66 1223-1230
  • 46 Shen X, Tan Y. Detection of oligoclonal immunoglobulins in the cerebrospinal fluid by immunofixation electrophoresis.  Clin Chem Lab Med. 2001;  39 1209-1210
  • 47 Dornmair K, Meinl E, Hohlfeld R. Novel approaches for identifying target antigens of autoreactive human B and T cells.  Semin Immunopathol. 2009;  31 467-477
  • 48 Lucchinetti C, Brück W, Parisi J et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination.  Ann Neurol. 2000;  47 707-717
  • 49 Qin Y, Duquette P, Zhang Y et al. Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis.  Lab Invest. 2003;  83 1081-1088
  • 50 Rock K L, Benacerraf B, Abbas A K. Antigen presentation by hapten-specific B lymphocytes. I. Role of surface immunoglobulin receptors.  J Exp Med. 1984;  160 1102-1113
  • 51 Constant S L. B lymphocytes as antigen-presenting cells for CD 4þ T cell priming in vivo.  J Immunol. 1999;  162 5695-5703
  • 52 Greter M, Heppner F L, Lemos M P et al. Dendritic cells permit immune invasion of the CNS in animal model of multiple sclerosis.  Nat Med. 2005;  11 328-334
  • 53 Racke M. The role of B cells in multiple sclerosis: rationale for B-cell-targeted therapies.  Curr Opin Neurol. 2008;  21 (Suppl 1) S9-S18
  • 54 Harp C T, Lovett-Racke A E, Racke M K et al. Impact of myelin-specific antigen presenting B cells on T cell activation in multiple sclerosis.  Clin Immunol. 2008;  128 382-391
  • 55 Serafini B, Rosicarelli B, Magliozzi R et al. Detection of ectopic B-cell follicles with germinal centers in meninges of patients with secondary progressive multiple sclerosis.  Brain Pathol. 2004;  14 164-174
  • 56 Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases.  Nat Rev Immunol. 2006;  6 205-217
  • 57 Kaiser C C, Shukla D K, Stebbins G T et al. A pilot test of pioglitazone as an add-on in patients with relapsing remitting multiple sclerosis.  J Neuroimmunol. 2009;  211 124-130
  • 58 Serafini B, Severa M, Columba-Cabezas S et al. Epstein-Barr virus latent i nfection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation.  J Neuropathol Exp Neurol. 2010;  69 677-693
  • 59 Bø L, Vedeler C A, Nyland H et al. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration.  Mult Scler. 2003;  9 323-331
  • 60 Willis S N, Stadelmann C, Rodig S J et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain.  Brain. 2009;  132 3318-3328
  • 61 Sargsyan S A, Shearer A J, Ritchie A M et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis.  Neurology. 2010;  74 1127-1135
  • 62 Fillatreau S, Sweenie C H, McGeachy M J et al. B cells regulate autoimmunity by provision of IL-10.  Nat Immunol. 2002;  3 944-950
  • 63 Matsushita T, Yanaba K, Bouaziz J D et al. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression.  J Clin Invest. 2008;  118 3420-3430
  • 64 Warrington A E, Asakura K, Bieber A J et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis.  Proc Natl Acad Sci USA. 2000;  97 6820-6825
  • 65 Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research.  Brain. 2006;  129 1953-1971
  • 66 Goverman J, Brabb T. Rodent models of experimental allergic encephalomyelitis applied to the study of multiple sclerosis.  Lab Anim Sci. 1996;  46 482-492
  • 67 Kuerten S, Angelov D N. Comparing the CNS morphology and immunobiology of different EAE models in C 57BL/ 6 mice – a step towards understanding the complexity of multiple sclerosis.  Ann Anat. 2008;  190 1-15
  • 68 Steinmann L, Zamvil S. Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis.  Trends in Immunol. 2005;  26 565-571
  • 69 Steinman L, Zamvil S S. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis.  Ann Neurol. 2006;  60 12-21
  • 70 Yip H C, Karulin A Y, Tary-Lehmann M et al. Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichotomy defines the class of response.  J Immunol. 1999;  162 3942-3949
  • 71 Sriram S, Steiner I. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis.  Ann Neurol. 2005;  58 939-945
  • 72 Stefferl A, Storch M K, Linington C et al. Disease progression in chronic relapsing experimental allergic encephalomyelitis is associated with reduced inflammation-driven production of corticosterone.  Endocrinology. 2001;  142 3616-3612
  • 73 Genain C P, Nguyen M H, Letvin N L et al. Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate.  J Clin Invest. 1995;  96 2966-2974
  • 74 't Hart B A, Massacesi L. Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus).  J Neuropathol Exp Neurol. 2009;  68 341-355
  • 75 Hjelmstrom P, Juedes A E, Fjell J et al. B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization.  J Immunol. 1998;  161 4480-4483
  • 76 Oliver A R, Lyon G M, Ruddle N H. Rat and human myelin oligodendrocyte glycoproteins induce experimental autoimmune encephalomyelitis by different mechanisms in C 57BL/ 6 mice.  J Immunol. 2003;  171 462-468
  • 77 Kuerten S, Lichtenegger F S, Faas S et al. MBP-PLP fusion protein-induced EAE in C 57BL/ 6 mice.  J Neuroimmunol. 2006;  177 99-111
  • 78 Kuerten S, Javeri S, Tary-Lehmann M et al. Fundamental differences in the CNS lesion development and composition in MP 4- and MOG:35 – 55-induced EAE.  Clin Immunol. 2008;  129 256-267
  • 79 Elliott E A, McFarland H I, Nye S H et al. Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein.  J Clin Invest. 1996;  98 1602-1612
  • 80 Pöllinger B, Krishnamoorthy G, Berer K et al. Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells.  J Exp Med. 2009;  206 1303-1316
  • 81 Genc K, Dona D L, Reder A T. Increased CD 80(+) B cells in active multiple sclerosis and reversal by interferon beta-1b therapy.  J Clin Invest. 1997;  99 2664-2671
  • 82 Kim H J, Ifergan I, Antel J P et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis.  J Immunol. 2004;  172 7144-7153
  • 83 Kala M, Rhodes S N, Piao W H et al. B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis.  Exp Neurol. 2010;  221 136-145
  • 84 Begum-Haque S, Sharma A, Christy M et al. Increased expression of B-cell associated regulatory cytokines by glatiramer acetate in mice with experimental autoimmune encephalomyelitis.  J Neuroimmunol. 2010;  219 47-53
  • 85 Krumbholz M, Faber H, Steinmeyer F et al. Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity.  Brain. 2008;  131 1455-1463
  • 86 Steinman L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab.  Nat Rev Drug Discov. 2005;  4 510-518
  • 87 Rudick R A, Sandrock A. Natalizumab. alpha 4-integrin antagonist selective adhesion molecule inhibitors for MS.  Expert Rev Neurother. 2004;  4 571-580
  • 88 Krumbholz M, Meinl I, Kümpfel T et al. Natalizumab disproportionately increases circulating pre-B and B cells in multiple sclerosis.  Neurology. 2008;  71 1350-1354
  • 89 Weissert R. Progressive multifocal leukoencephalopathy.  J Neuroimmunol. 2010;  [Epub ahead of print]
  • 90 Meinl E, Krumbholz M, Hohlfeld R. B linage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production and therapeutic modulation.  Ann Neurol. 2006;  59 880-892
  • 91 Menge T, Büdingen H C, Dalakas M C et al. B-Zell-gerichtete Multiple-Sklerose-Therapie: Aktueller Stand.  Nervenarzt. 2009;  80 190-198
  • 92 Cross A H, Stark J L, Lauber J et al. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients.  J Neuroimmunol. 2006;  180 63-70
  • 93 Nückel H, Frey U H, Röth A et al. Alemtuzumab induces enhanced apoptosis in vitro in B-cells from patients with chronic lymphocytic leukemia by antibody-dependent cellular cytotoxicity.  Eur J Pharmacol. 2005;  514 217-224
  • 94 Hawker K. B-cell-targeted treatment for multiple sclerosis: mechanism of action and clinical data.  Curr Opin Neurol. 2008;  21 (Suppl 1) S19-S25
  • 95 Monson N. The natural history of B cells.  Curr Opin Neurol. 2008;  21 (Suppl 1) S3-S8
  • 96 Chan A, Weilbach F X, Toyka K V et al. Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis patients.  Clin Exp Immunol. 2005;  139 152-158

Dr. Stefanie Kuerten

Anatomie I, Universität zu Köln

Joseph-Stelzmann-Str. 9

50931 Köln

Email: stefanie.kuerten@uk-koeln.de