Subscribe to RSS
DOI: 10.1055/s-0029-1245983
© Georg Thieme Verlag KG Stuttgart · New York
Liver Lesion Segmentation in MSCT: Effect of Slice Thickness on Segmentation Quality, Measurement Precision and Interobserver Variability
Semiautomatische Segmentierung von Leberläsionen in der MSCT: Einfluss der Schichtdicke auf die Segmentierungsqualität, Messgenauigkeit und InterobservervariabilitätPublication History
received: 21.7.2010
accepted: 1.12.2010
Publication Date:
18 January 2011 (online)
Zusammenfassung
Ziel: Beurteilung des Einflusses der Schichtdicke auf die semiautomatische Segmentierung von Leberläsionen. Material und Methoden: In dieser retrospektiven Studie wurden MSCT-Datensätze der Leber von 60 Patienten in einer Schichtdicke von 1,5 mm, 3 mm und 5 mm rekonstruiert. 106 Leberläsionen (8 – 64 mm, Mittelwert 25 ± 13 mm) wurden unabhängig von 2 Radiologen mit einer semiautomatischen Segmentierungssoftware (OncoTreat®) ausgewertet und der Längs- (LAD) und Kurzachsendurchmesser (SAD) sowie das Volumen bestimmt. Abhängig vom Kontrast-zu-Rausch-Verhältnis wurden die Läsionen als zystisch, hypodens oder hyperdens eingeteilt. Der manuelle Korrekturbedarf (NOC = relative Differenz zwischen korrigiertem und unkorrigiertem Volumen) und die relative Interobserverdifferenz (RID) wurden bestimmt. Die Genauigkeit der Messungen wurde anhand der relativen Messabweichung (RMD) vom Referenzstandard (Mittelwert bei 1,5 mm) ermittelt. Die statistische Auswertung erfolgten explorativ mittels Wilcoxon-Test, t-Test und Intraclass-Korrelationskoeffizienten (ICC). Ergebnisse: Unabhängig vom Läsionstyp war die NOC bei einer Schichtdicke von 5 mm signifikant höher als bei 3 mm (p = 0,035) und 1,5 mm (p = 0,0002). Die RID war für LAD, SAD und Volumen bei allen Läsionstypen und Schichtdicken gering (ICC > 0,89). Jedoch war die RMD für LAD, SAD und Volumen bei 5,0 mm signifikant höher (p < 0,01), z. B. Volumen: Anstieg der RMD von 0,5 % bei 1,5 mm auf 5,5 % bei 3,0 mm und 7,6 % bei 5,0 mm. Schlussfolgerung: Aufgrund der Zunahme der notwendigen Korrekturschritte und der signifikanten Messabweichung bei größeren Schichtdicken sollte für die semiautomatische Auswertung von unterschiedlich vaskularisierten Leberläsionen eine Schichtdicke von 1,5 mm gewählt und eine Schichtdicke von 3,0 mm nicht überschritten werden.
Abstract
Purpose: To evaluate the effect of slice thickness on semi-automated liver lesion segmentation. Materials and Methods: In this retrospective study, liver MSCT scans from 60 patients were reconstructed at a slice thickness of 1.5 mm, 3 mm and 5 mm. 106 liver lesions (8 – 64 mm, mean size 25 ± 13 mm) were evaluated independently by two radiologists using semi-automated segmentation software (OncoTreat®). Lesions were classified as cystic, hypodense and hyperdense according to their contrast-to-noise ratio (CNR). The long axis diameter (LAD), short axis diameter (SAD) and volume were measured. The necessity for manual correction (NOC = relative difference between uncorrected and corrected volume) and the relative interobserver difference (RID) were determined. Precision was calculated in terms of relative measurement deviations (RMD) from the reference standard (mean of 1.5 mm data sets). Wilcoxon test, t-test and intraclass correlation coefficients (ICC) were employed for statistical analysis. All statistical analyses were intended to be exploratory. Results: Regardless of the liver lesion subtype, the NOC was found to be significantly higher for 5 mm than for 3 mm (p = 0.035) and 1.5 mm (p = 0.0002). The RID was consistently low for metric and volumetric parameters with no difference in any of the slice thicknesses for all subtypes (ICC > 0.89). The RMD increased significantly for the LAD, SAD and volume at a slice thickness of 5 mm (p < 0.01), e. g. volume: 0.5 % at 1.5 mm, 5.5 % at 3.0 mm and 7.6 % at 5.0 mm. Conclusion: Since the deviations in measurements are significant, and manual corrections made during semi-automated assessment of the liver lesions are considerable, a slice thickness of 1.5 mm, and no more than 3.0 mm, should be used for reconstruction for inconsistently vascularized liver lesions.
Key words
semi-automated segmentation - liver lesions - MSCT - slice thickness
References
- 1 Eisenhauer E A, Therasse P, Bogaerts J et al. New response evaluation criteria in solid tumors: revised RECIST guidelines (version 1.1). Eur J Cancer. 2009; 45 228-247
- 2 Therasse P, Arbuck S G, Eisenhauer E A et al. New guidelines to evaluate the response treatment in solid tumors. J Natl Cancer Inst. 2000; 92 205-216
- 3 Marten K, Auer F, Schmidt S et al. Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria. Eur Radiol. 2006; 16 781-790
- 4 Wormanns D, Kohl G, Klotz E et al. Volumetric measurement of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol. 2004; 14 86-92
- 5 Prasad S R, Jhaveri K S, Saini S et al. CT tumor measurement for therapeutic response assessment: comparison of unidimensional, bidimensional and volumetric techniques initial observations. Radiology. 2002; 225 416-419
- 6 Hoe van L, Cutsem van E, Vergote I et al. Size quantification of liver metastases in patients undergoing cancer treatment: reproducibility of one, two-, and three-dimensional measurements determined with spiral CT. Radiology. 1997; 202 671-675
- 7 Das M, Ley-Zaporozhan J, Gietema H A et al. Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners. Eur Radiol. 2007; 17 1979-1984
- 8 Fabel M, Tengg-Kobligk von H, Giesel F L et al. Semi-automated volumetric analysis of lymph node metastases in patients with malignant melanoma stage III/IV – a feasibility study. Eur Radiol. 2008; 18 1114-1122
- 9 Dornheim J, Seim H, Preim B et al. Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models segmentation of neck lymph nodes. Acad Radiol. 2007; 14 1389-1399
- 10 Heußel C P, Meier S, Wittelsberger S et al. Follow-up CT measurement of liver malignoma according to RECIST and WHO vs. volumetry. Fortschr Röntgenstr. 2007; 179 958-964
- 11 Puesken M, Juergens K U, Edenfeld A et al. Accuracy of liver lesion assessment using automated measurement and segmentation software in biphasic multislice CT (MSCT). Fortschr Röntgenstr. 2009; 181 67-73
- 12 Keil S, Plumhans C, Behrendt F F et al. Semi-automated quantification of hepatic lesions in a phantom. Invest Radiol. 2009; 44 82-88
- 13 Keil S, Behrendt F F, Stanzel S et al. Semi-automated measurement of hyperdense, hypodense and heterogeneous hepatic metastasis on standard MDCT slices. Comparison of semi-automated and manual measurement of RECIST and WHO criteria. Eur Radiol. 2008; 18 2456-2465
- 14 Wessling J, Esseling R, Raupach R et al. The effect of dose reduction and feasibility of edge-preserving noise reduction on the detection of liver lesions using MSCT. Eur Radiol. 2007; 17 1885-1891
- 15 Kuhnigk J M, Dicken V, Bornemann L et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging. 2006; 25 417-434
- 16 Bornemann L, Dicken V, Kuhnigk J M et al. OncoTREAT: a software assistant for cancer therapy monitoring. Int J Comput Ass Radiol Surg. 2007; 1 231-242
- 17 Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1 307-310
- 18 Das M, Muhlenbruch G, Katoh M et al. Automated volumetry of solid pulmonary nodules in a phantom: accuracy across different CT scanner technologies. Invest Radiol. 2007; 42 297-302
- 19 Yankelevitz D F, Reeves A P, Kostis W J et al. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology. 2000; 217 251-256
- 20 Larici A R, Storto M L, Torge M et al. Automated volumetry of pulmonary nodules on multidetector CT: influence of slice thickness, reconstruction algorithm and tube current. Preliminary results. Radiol Med. 2008; 113 29-42
- 21 Petrou M, Quint L E, Nan B et al. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. Am J Roentgenol. 2007; 188 306-312
- 22 Fischbach F, Knollmann F, Griesshaber V et al. Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness. Eur Radiol. 2003; 13 2378-2383
- 23 Lee J S, Jani A B, Pelizzari C A et al. Volumetric visualization of head and neck CT data for treatment planning. Int J Radiat Oncol Biol Phys. 1999; 44 693-703
- 24 Hopper K D, Kasales C J, Slyke M A et al. Analysis of interobserver and intraobserver variability in CT tumor measurements. Am J Roentgenol. 1996; 167 851-854
- 25 Therasse van P, Eisenhauer E A, Verweij J. RECIST revisited: a review of validation studies on tumor assessment. Eur J Cancer. 2006; 42 1031-1039
- 26 Buerke B, Puesken M, Beyer F et al. Semiautomatic Lymph Node Segmentation in Multislice Computed Tomography: Impact of Slice Thickness on Segmentation Quality, Measurement Precision, and Interobserver Variability. Invest Radiol. 2010; 45 82-88
Dr. Michael Puesken
Institut für Klinische Radiologie, Universitätsklinikum Münster
Albert-Schweitzer-Straße 33
48149 Münster
Germany
Phone: ++ 49/2 51/8 34 73 40
Fax: ++ 49/2 51/8 34 96 56
Email: Michael.Puesken@ukmuenster.de