RSS-Feed abonnieren
DOI: 10.1055/s-0029-1246055
© Georg Thieme Verlag KG Stuttgart · New York
Multiparametrische Magnetresonanztomografie der Prostata – Technik und klinische Anwendungen
Multiparametric Magnetic Resonance Imaging of the Prostate – Technique and Clinical ApplicationsPublikationsverlauf
eingereicht: 5.11.2010
angenommen: 10.1.2011
Publikationsdatum:
12. April 2011 (online)

Zusammenfassung
Die multiparametrische Magnetresonanztomografie umfasst die 1H-Magnetresonanzspektroskopie, die diffusionsgewichtete Bildgebung und die dynamische kontrastmittelgestützte Magnetresonanztomografie. Für die Prostatadiagnostik werden diese Methoden immer häufiger zusätzlich zu den konventionellen T 2- und T 1-gewichteten Bildern angewendet. Der erste Teil dieses Reviews geht daher für jede Methode getrennt auf die Technik, die wichtigsten diagnostischen Parameter und deren pathohistologischen Hintergrund ein. Ferner werden in diesem Teil die für jede Methode charakteristischen Merkmale des Prostatakarzinoms und des nicht karzinomatösen Prostatagewebes aufgezeigt. Im zweiten, klinischen Teil werden die klinischen Anwendungen wie frühzeitiger Nachweis, Lokalisation, Staging und Rezidivdiagnostik diskutiert und die aktuellen Veröffentlichungen auf diesem Gebiet zusammengefasst. Des Weiteren werden mögliche zukünftige klinische Anwendungen wie Bestimmung der biologischen Aggressivität und des Tumorvolumens aufgezeigt.
Abstract
Multiparametric magnetic resonance imaging (MRI) includes 1 H magnetic resonance spectroscopy, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. These new MRI techniques are increasingly being used to supplement conventional T 2 and T 1-weighted MR sequences in prostate imaging. The first part of this review outlines each of these techniques, the most important diagnostic parameters, and the pathophysiological background. The characteristic features of prostate cancer and noncancerous prostate tissue as depicted with each of the three techniques are presented. The second, clinical part outlines the diagnostic applications of the three MRI techniques for the early detection and localization of prostate cancer, staging, and the identification of recurrent cancer and discusses the most recent publications in this field. The review concludes with a look at emerging clinical applications such as the evaluation of biological aggressiveness and tumor volume.
Key words
MR functional imaging - MR diffusion/perfusion - MR spectroscopy - prostate
Literatur
- 1 Bertz J, Dahm S, Haberland J. et al .Prostata. In Verbreitung von Krebserkrankungen in Deutschland,. Berlin: Robert Koch Institut; 2010: 98-102
MissingFormLabel
- 2
Schlemmer H P.
Multiparametrische MRT der Prostata: Methode zur Früherkennung des Prostatakarzinoms?.
Fortschr Röntgenstr.
2010;
182
1067-1075
MissingFormLabel
- 3
Fütterer J J, Heijmink S W, Scheenen T W et al.
Prostate Cancer Localization with Dynamic Contrast-enhanced MR Imaging and Proton
MR Spectroscopic Imaging.
Radiology.
2006;
241
449-458
MissingFormLabel
- 4
Sciarra A, Panebianco V, Ciccariello M et al.
Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging
for detecting prostate cancer foci in men with prior negative biopsy.
Clin Cancer Res.
2010;
16
1875-1883
MissingFormLabel
- 5
Lim H K, Kim J K, Kim K A et al.
Prostate cancer: apparent diffusion coefficient map with T 2-weighted images for detection
– a multireader study.
Radiology.
2009;
250
145-151
MissingFormLabel
- 6
McNeal J E.
Normal and pathologic anatomy of prostate.
Urology.
1981;
17
11-16
MissingFormLabel
- 7
McNeal J E, Redwine E A, Freiha F S et al.
Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern
and direction of spread.
Am J Surg Pathol.
1988;
12
897-906
MissingFormLabel
- 8
Mueller-Lisse U, Scheer M.
MRT und MR-Spektroskopie der Prostata – praktische Darstellungen.
Fortschr Röntgenstr.
2009;
181
S122
MissingFormLabel
- 9
Schlemmer H P.
MRT des Prostatakarzinoms.
Fortschr Röntgenstr.
2010;
182
S96
MissingFormLabel
- 10
Schlemmer H P.
Die MR-Tomographie und MR-Spektroskopie des Prostatakarzinoms.
Fortschr Röntgenstr.
2009;
181
S50
MissingFormLabel
- 11
Shukla-Dave A, Hricak H, Moskowitz C et al.
Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating
polyamines.
Radiology.
2007;
245
499-506
MissingFormLabel
- 12
Scheidler J, Vogel M, Gross P et al.
Combined MRI and MRS in prostate cancer: improvement of spectral quality by susceptibility
matching.
Fortschr Röntgenstr.
2009;
181
531-535
MissingFormLabel
- 13
Verma S, Rajesh A, Futterer J J et al.
Prostate MRI and 3D MR spectroscopy: how we do it.
Am J Roentgenol.
2010;
194
1414-1426
MissingFormLabel
- 14 Scheenen T, Weiland E, Fütterer J et al. Preliminary results of IMAPS: an international multi-centre assessment of proste MR
spectroscopy. Presented at:. 13th Scientific Meeting of The International Society for Magnetic Resonance
in Medicine. Miami, FL, USA; 2005 7 – 13 May 2005.
MissingFormLabel
- 15
Costello L C, Franklin R B, Feng P.
Mitochondrial function, zinc, and intermediary metabolism relationships in normal
prostate and prostate cancer.
Mitochondrion.
2005;
5
143-153
MissingFormLabel
- 16
Daly P F, Lyon R C, Faustino P J et al.
Phospholipid metabolism in cancer cells monitored by 31P NMR spectroscopy.
J Biol Chem.
1987;
262
14 875-14 878
MissingFormLabel
- 17
Stejskal E O, Tanner J E.
Spin diffusion measurements: spin echos in the presence of a time dependent field
gradient.
J Chem Phys.
1965;
42
288-292
MissingFormLabel
- 18
Mulkern R V, Barnes A S, Haker S J et al.
Biexponential characterization of prostate tissue water diffusion decay curves over
an extended b-factor range.
Magn Reson Imaging.
2006;
24
563-568
MissingFormLabel
- 19
Le Bihan D, Breton E, Lallemand D et al.
Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.
Radiology.
1988;
168
497-505
MissingFormLabel
- 20
Padhani A R, Liu G, Koh D M et al.
Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and
recommendations.
Neoplasia.
2009;
11
102-125
MissingFormLabel
- 21
Langer D L, Kwast T H, Evans A J et al.
Prostate tissue composition and MR measurements: investigating the relationships between
ADC, T 2, K(trans), v(e), and corresponding histologic features.
Radiology.
2010;
255
485-494
MissingFormLabel
- 22
Mazaheri van der Y, Shukla-Dave A, Hricak H et al.
Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D
1 H MR spectroscopic imaging – correlation with pathologic findings.
Radiology.
2008;
246
480-488
MissingFormLabel
- 23
Tamada T, Sone T, Jo Y et al.
Apparent diffusion coefficient values in peripheral and transition zones of the prostate:
comparison between normal and malignant prostatic tissues and correlation with histologic
grade.
J Magn Reson Imaging.
2008;
28
720-726
MissingFormLabel
- 24
Kim J H, Kim J K, Park B W et al.
Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according
to anatomical region.
J Magn Reson Imaging.
2008;
28
1173-1179
MissingFormLabel
- 25
Yamamura J, Salomon G, Graessner J et al.
MRT des Prostatakarzinoms: Diffusion Weighted Imaging im Vergleich mit der Histologie.
Fortschr Röntgenstr.
2009;
181
S242
MissingFormLabel
- 26
Walker-Samuel S, Orton M, McPhail L D et al.
Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid
tumors.
Magn Reson Med.
2009;
62
420-429
MissingFormLabel
- 27
Franiel T.
Kontrastmittel-Perfusionsuntersuchungen in der Urogenitalen Radiologie: Vom Modell
zur flächendeckenden klinischen Anwendung.
Fortschr Röntgenstr.
2010;
182
S149
MissingFormLabel
- 28
Engelbrecht M R, Huisman H J, Laheij R J et al.
Discrimination of prostate cancer from normal peripheral zone and central gland tissue
by using dynamic contrast-enhanced MR imaging.
Radiology.
2003;
229
248-254
MissingFormLabel
- 29
Tofts P S, Brix G, Buckley D L et al.
Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of
a diffusable tracer: standardized quantities and symbols.
J Magn Reson Imaging.
1999;
10
223-232
MissingFormLabel
- 30
Hoffmann U, Brix G, Knopp M V et al.
Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography.
Magn Reson Med.
1995;
33
506-514
MissingFormLabel
- 31
Prochnow D, Beyersdorff D, Warmuth C et al.
Implementation of a rapid inversion-prepared dual-contrast gradient echo sequence
for quantitative dynamic contrast-enhanced magnetic resonance imaging of the human
prostate.
Magn Reson Imaging.
2005;
23
983-990
MissingFormLabel
- 32
Tweedle M F, Wedeking P, Telser J et al.
Dependence of MR signal intensity on Gd tissue concentration over a broad dose range.
Magn Reson Med.
1991;
22
191-194
; discussion 195 – 196
MissingFormLabel
- 33
Walker-Samuel S, Leach M O, Collins D J.
Reference tissue quantification of DCE-MRI data without a contrast agent calibration.
Phys Med Biol.
2007;
52
589-601
MissingFormLabel
- 34
Cheng H L, Wright G A.
Rapid high-resolution T(1) mapping by variable flip angles: accurate and precise measurements
in the presence of radiofrequency field inhomogeneity.
Magn Reson Med.
2006;
55
566-574
MissingFormLabel
- 35
Parker G J, Roberts C, Macdonald A et al.
Experimentally-derived functional form for a population-averaged high-temporal-resolution
arterial input function for dynamic contrast-enhanced MRI.
Magn Reson Med.
2006;
56
993-1000
MissingFormLabel
- 36
Brix G, Semmler W, Port R et al.
Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging.
J Comput Assist Tomogr.
1991;
15
621-628
MissingFormLabel
- 37
Lüdemann L, Prochnow D, Rohlfing T et al.
Simultaneous Quantification of Perfusion and Permeability in the Prostate Using Dynamic
Contrast-Enhanced Magnetic Resonance Imaging with an Inversion-Prepared Dual-Contrast
Sequence.
Ann Biomed Eng.
2009;
37
749-762
MissingFormLabel
- 38
Franiel T, Lüdemann L, Rudolph B et al.
Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by
quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared
dual-contrast gradient echo sequence.
Invest Radiol.
2008;
43
481-487
MissingFormLabel
- 39
Franiel T, Lüdemann L, Rudolph B et al.
Prostate MR imaging: tissue characterization with pharmacokinetic volume and blood
flow parameters and correlation with histologic parameters.
Radiology.
2009;
252
101-108
MissingFormLabel
- 40
Buckley D L, Roberts C, Parker G J et al.
Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced
T 1-weighted MR imaging – initial experience.
Radiology.
2004;
233
709-715
MissingFormLabel
- 41
Riches S F, Payne G S, Morgan V A et al.
MRI in the detection of prostate cancer: combined apparent diffusion coefficient,
metabolite ratio, and vascular parameters.
Am J Roentgenol.
2009;
193
1583-1591
MissingFormLabel
- 42
Dorsten F A, Graaf van M, Engelbrecht van der M R et al.
Combined quantitative dynamic contrast-enhanced MR imaging and (1)H MR spectroscopic
imaging of human prostate cancer.
J Magn Reson Imaging.
2004;
20
279-287
MissingFormLabel
- 43
Heijmink S W, Fütterer J J, Hambrock T et al.
Prostate cancer: body-array versus endorectal coil MR imaging at 3T – comparison of
image quality, localization, and staging performance.
Radiology.
2007;
244
184-195
MissingFormLabel
- 44
Beyersdorff D, Taymoorian K, Knosel T et al.
MRI of prostate cancer at 1.5 and 3.0T: comparison of image quality in tumor detection
and staging.
Am J Roentgenol.
2005;
185
1214-1220
MissingFormLabel
- 45
Tanimoto A, Nakashima J, Kohno H et al.
Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic
MR imaging in combination with T 2-weighted imaging.
J Magn Reson Imaging.
2007;
25
146-152
MissingFormLabel
- 46
Kumar R, Nayyar R, Kumar V et al.
Potential of magnetic resonance spectroscopic imaging in predicting absence of prostate
cancer in men with serum prostate-specific antigen between 4 and 10 ng/ml: a follow-up
study.
Urology.
2008;
72
859-863
MissingFormLabel
- 47
Prando A, Kurhanewicz J, Borges A P et al.
Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients
with elevated prostate specific antigen levels and prior negative biopsy findings:
early experience.
Radiology.
2005;
236
903-910
MissingFormLabel
- 48
Zangos S, Eichler K, Thalhammer A et al.
Aktueller Stand der MR-gesteuerten Prostata-Interventionen.
Fortschr Röntgenstr.
2010;
182
947-953
MissingFormLabel
- 49
Franiel T, Stephan C, Erbersdobler A et al.
Areas suspicious for prostate cancer: MR-guided biopsy of the prostate in patients
with at least one transrectal US-guided biopsy with a negative finding – multiparametric
MR Imaging for detection and biopsy planning.
Radiology.
2011;
; In Press
MissingFormLabel
- 50
Hricak H, Wang L, Wei D C et al.
The role of preoperative endorectal magnetic resonance imaging in the decision regarding
whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy.
Cancer.
2004;
100
2655-2663
MissingFormLabel
- 51
Röthke M, Lichy M, Schilling D et al.
Klinische Wertigkeit der endorektalen MRT vor geplanter nerverhaltender radikaler
Prostatektomie.
Fortschr Röntgenstr.
2009;
181
S243
MissingFormLabel
- 52
Nakashima J, Tanimoto A, Imai Y et al.
Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate
cancer.
Urology.
2004;
64
101-105
MissingFormLabel
- 53
Zakian K L, Sircar K, Hricak H et al.
Correlation of proton MR spectroscopic imaging with gleason score based on step-section
pathologic analysis after radical prostatectomy.
Radiology.
2005;
234
804-814
MissingFormLabel
- 54
Bloch B N, Furman-Haran E, Helbich T H et al.
Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution
dynamic contrast-enhanced and T 2-weighted MR imaging – initial results.
Radiology.
2007;
245
176-185
MissingFormLabel
- 55
Yu K K, Scheidler J, Hricak H et al.
Prostate cancer: prediction of extracapsular extension with endorectal MR imaging
and three-dimensional proton MR spectroscopic imaging.
Radiology.
1999;
213
481-488
MissingFormLabel
- 56
Wang L, Hricak H, Kattan M W et al.
Prediction of organ-confined prostate cancer: incremental value of MR imaging and
MR spectroscopic imaging to staging nomograms.
Radiology.
2006;
238
597-603
MissingFormLabel
- 57
D’Amico A V, Whittington R, Malkowicz S B et al.
Biochemical outcome after radical prostatectomy or external beam radiation therapy
for patients with clinically localized prostate carcinoma in the prostate specific
antigen era.
Cancer.
2002;
95
281-286
MissingFormLabel
- 58
Sella T, Schwartz L H, Swindle P W et al.
Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging.
Radiology.
2004;
231
379-385
MissingFormLabel
- 59
Pucar D, Hricak H, Shukla-Dave A et al.
Clinically significant prostate cancer local recurrence after radiation therapy occurs
at the site of primary tumor: magnetic resonance imaging and step-section pathology
evidence.
Int J Radiat Oncol Biol Phys.
2007;
69
62-69
MissingFormLabel
- 60
Coakley F V, Teh H S, Qayyum A et al.
Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate
cancer after external beam radiation therapy: preliminary experience.
Radiology.
2004;
233
441-448
MissingFormLabel
- 61
Kim C K, Park B K, Lee H M.
Prediction of locally recurrent prostate cancer after radiation therapy: incremental
value of 3 T diffusion-weighted MRI.
J Magn Reson Imaging.
2009;
29
391-397
MissingFormLabel
- 62
Haider M A, Chung P, Sweet J et al.
Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent
prostate cancer after external beam radiotherapy.
Int J Radiat Oncol Biol Phys.
2008;
70
425-430
MissingFormLabel
- 63
Sciarra A, Panebianco V, Salciccia S et al.
Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic
imaging in the detection of local recurrence after radical prostatectomy for prostate
cancer.
Eur Urol.
2008;
54
589-600
MissingFormLabel
- 64
Cirillo S, Petracchini M, Scotti L et al.
Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following
radical prostatectomy using T 2-weighted and contrast-enhanced imaging.
Eur Radiol.
2009;
19
761-769
MissingFormLabel
- 65
Shukla-Dave A, Hricak H, Eberhardt S C et al.
Chronic prostatitis: MR imaging and 1 H MR spectroscopic imaging findings – initial
observations.
Radiology.
2004;
231
717-724
MissingFormLabel
- 66
Kulkarni G S, Lockwood G, Evans A et al.
Clinical predictors of Gleason score upgrading: implications for patients considering
watchful waiting, active surveillance, or brachytherapy.
Cancer.
2007;
109
2432-2438
MissingFormLabel
- 67
Franiel T, Lüdemann L, Taupitz M et al.
Pharmakokinetische MRT der Prostata: Parameter zur Unterscheidung von Low-grade- und
High-grade-Prostatakarzinomen.
Fortschr Röntgenstr.
2009;
181
536-542
MissingFormLabel
- 68
D’Amico A V, Chang H, Holupka E et al.
Calculated prostate cancer volume: the optimal predictor of actual cancer volume and
pathologic stage.
Urology.
1997;
49
385-391
MissingFormLabel
- 69
Coakley F V, Kurhanewicz J, Lu Y et al.
Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic
imaging.
Radiology.
2002;
223
91-97
MissingFormLabel
- 70
Mazaheri Y, Hricak H, Fine S W et al.
Prostate tumor volume measurement with combined T 2-weighted imaging and diffusion-weighted
MR: correlation with pathologic tumor volume.
Radiology.
2009;
252
449-457
MissingFormLabel
- 71
Zhang J, Hricak H, Shukla-Dave A et al.
Clinical stage T 1c prostate cancer: evaluation with endorectal MR imaging and MR
spectroscopic imaging.
Radiology.
2009;
253
425-434
MissingFormLabel
- 72
Shukla-Dave A, Hricak H, Kattan M W et al.
The utility of magnetic resonance imaging and spectroscopy for predicting insignificant
prostate cancer: an initial analysis.
BJU Int.
2007;
99
786-793
MissingFormLabel
Dr. Tobias Franiel
Radiologie CCM, Charité – Universitätsmedizin Berlin
Schumannstraße 20 / 21
10098 Berlin
Telefon: ++ 49/30/4 50 52 70 18
Fax: ++ 49/30/4 50 52 79 10
eMail: tobias.franiel@charite.de