Rofo 2011; 183(7): 607-617
DOI: 10.1055/s-0029-1246055
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Multiparametrische Magnetresonanztomografie der Prostata – Technik und klinische Anwendungen

Multiparametric Magnetic Resonance Imaging of the Prostate – Technique and Clinical ApplicationsT. Franiel1
  • 1Radiologie CCM, Charité – Universitätsmedizin Berlin
Weitere Informationen

Publikationsverlauf

eingereicht: 5.11.2010

angenommen: 10.1.2011

Publikationsdatum:
12. April 2011 (online)

Zusammenfassung

Die multiparametrische Magnetresonanztomografie umfasst die 1H-Magnetresonanzspektroskopie, die diffusionsgewichtete Bildgebung und die dynamische kontrastmittelgestützte Magnetresonanztomografie. Für die Prostatadiagnostik werden diese Methoden immer häufiger zusätzlich zu den konventionellen T 2- und T 1-gewichteten Bildern angewendet. Der erste Teil dieses Reviews geht daher für jede Methode getrennt auf die Technik, die wichtigsten diagnostischen Parameter und deren pathohistologischen Hintergrund ein. Ferner werden in diesem Teil die für jede Methode charakteristischen Merkmale des Prostatakarzinoms und des nicht karzinomatösen Prostatagewebes aufgezeigt. Im zweiten, klinischen Teil werden die klinischen Anwendungen wie frühzeitiger Nachweis, Lokalisation, Staging und Rezidivdiagnostik diskutiert und die aktuellen Veröffentlichungen auf diesem Gebiet zusammengefasst. Des Weiteren werden mögliche zukünftige klinische Anwendungen wie Bestimmung der biologischen Aggressivität und des Tumorvolumens aufgezeigt.

Abstract

Multiparametric magnetic resonance imaging (MRI) includes 1 H magnetic resonance spectroscopy, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. These new MRI techniques are increasingly being used to supplement conventional T 2 and T 1-weighted MR sequences in prostate imaging. The first part of this review outlines each of these techniques, the most important diagnostic parameters, and the pathophysiological background. The characteristic features of prostate cancer and noncancerous prostate tissue as depicted with each of the three techniques are presented. The second, clinical part outlines the diagnostic applications of the three MRI techniques for the early detection and localization of prostate cancer, staging, and the identification of recurrent cancer and discusses the most recent publications in this field. The review concludes with a look at emerging clinical applications such as the evaluation of biological aggressiveness and tumor volume.

Literatur

  • 1 Bertz J, Dahm S, Haberland J. et al .Prostata. In Verbreitung von Krebserkrankungen in Deutschland,. Berlin: Robert Koch Institut; 2010: 98-102
  • 2 Schlemmer H P. Multiparametrische MRT der Prostata: Methode zur Früherkennung des Prostatakarzinoms?.  Fortschr Röntgenstr. 2010;  182 1067-1075
  • 3 Fütterer J J, Heijmink S W, Scheenen T W et al. Prostate Cancer Localization with Dynamic Contrast-enhanced MR Imaging and Proton MR Spectroscopic Imaging.  Radiology. 2006;  241 449-458
  • 4 Sciarra A, Panebianco V, Ciccariello M et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy.  Clin Cancer Res. 2010;  16 1875-1883
  • 5 Lim H K, Kim J K, Kim K A et al. Prostate cancer: apparent diffusion coefficient map with T 2-weighted images for detection – a multireader study.  Radiology. 2009;  250 145-151
  • 6 McNeal J E. Normal and pathologic anatomy of prostate.  Urology. 1981;  17 11-16
  • 7 McNeal J E, Redwine E A, Freiha F S et al. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread.  Am J Surg Pathol. 1988;  12 897-906
  • 8 Mueller-Lisse U, Scheer M. MRT und MR-Spektroskopie der Prostata – praktische Darstellungen.  Fortschr Röntgenstr. 2009;  181 S122
  • 9 Schlemmer H P. MRT des Prostatakarzinoms.  Fortschr Röntgenstr. 2010;  182 S96
  • 10 Schlemmer H P. Die MR-Tomographie und MR-Spektroskopie des Prostatakarzinoms.  Fortschr Röntgenstr. 2009;  181 S50
  • 11 Shukla-Dave A, Hricak H, Moskowitz C et al. Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines.  Radiology. 2007;  245 499-506
  • 12 Scheidler J, Vogel M, Gross P et al. Combined MRI and MRS in prostate cancer: improvement of spectral quality by susceptibility matching.  Fortschr Röntgenstr. 2009;  181 531-535
  • 13 Verma S, Rajesh A, Futterer J J et al. Prostate MRI and 3D MR spectroscopy: how we do it.  Am J Roentgenol. 2010;  194 1414-1426
  • 14 Scheenen T, Weiland E, Fütterer J et al. Preliminary results of IMAPS: an international multi-centre assessment of proste MR spectroscopy. Presented at:. 13th Scientific Meeting of The International Society for Magnetic Resonance in Medicine. Miami, FL, USA; 2005 7 – 13 May 2005.
  • 15 Costello L C, Franklin R B, Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer.  Mitochondrion. 2005;  5 143-153
  • 16 Daly P F, Lyon R C, Faustino P J et al. Phospholipid metabolism in cancer cells monitored by 31P NMR spectroscopy.  J Biol Chem. 1987;  262 14 875-14 878
  • 17 Stejskal E O, Tanner J E. Spin diffusion measurements: spin echos in the presence of a time dependent field gradient.  J Chem Phys. 1965;  42 288-292
  • 18 Mulkern R V, Barnes A S, Haker S J et al. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range.  Magn Reson Imaging. 2006;  24 563-568
  • 19 Le Bihan D, Breton E, Lallemand D et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.  Radiology. 1988;  168 497-505
  • 20 Padhani A R, Liu G, Koh D M et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations.  Neoplasia. 2009;  11 102-125
  • 21 Langer D L, Kwast T H, Evans A J et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T 2, K(trans), v(e), and corresponding histologic features.  Radiology. 2010;  255 485-494
  • 22 Mazaheri van der Y, Shukla-Dave A, Hricak H et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1 H MR spectroscopic imaging – correlation with pathologic findings.  Radiology. 2008;  246 480-488
  • 23 Tamada T, Sone T, Jo Y et al. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade.  J Magn Reson Imaging. 2008;  28 720-726
  • 24 Kim J H, Kim J K, Park B W et al. Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according to anatomical region.  J Magn Reson Imaging. 2008;  28 1173-1179
  • 25 Yamamura J, Salomon G, Graessner J et al. MRT des Prostatakarzinoms: Diffusion Weighted Imaging im Vergleich mit der Histologie.  Fortschr Röntgenstr. 2009;  181 S242
  • 26 Walker-Samuel S, Orton M, McPhail L D et al. Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumors.  Magn Reson Med. 2009;  62 420-429
  • 27 Franiel T. Kontrastmittel-Perfusionsuntersuchungen in der Urogenitalen Radiologie: Vom Modell zur flächendeckenden klinischen Anwendung.  Fortschr Röntgenstr. 2010;  182 S149
  • 28 Engelbrecht M R, Huisman H J, Laheij R J et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging.  Radiology. 2003;  229 248-254
  • 29 Tofts P S, Brix G, Buckley D L et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.  J Magn Reson Imaging. 1999;  10 223-232
  • 30 Hoffmann U, Brix G, Knopp M V et al. Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography.  Magn Reson Med. 1995;  33 506-514
  • 31 Prochnow D, Beyersdorff D, Warmuth C et al. Implementation of a rapid inversion-prepared dual-contrast gradient echo sequence for quantitative dynamic contrast-enhanced magnetic resonance imaging of the human prostate.  Magn Reson Imaging. 2005;  23 983-990
  • 32 Tweedle M F, Wedeking P, Telser J et al. Dependence of MR signal intensity on Gd tissue concentration over a broad dose range.  Magn Reson Med. 1991;  22 191-194 ; discussion 195 – 196
  • 33 Walker-Samuel S, Leach M O, Collins D J. Reference tissue quantification of DCE-MRI data without a contrast agent calibration.  Phys Med Biol. 2007;  52 589-601
  • 34 Cheng H L, Wright G A. Rapid high-resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity.  Magn Reson Med. 2006;  55 566-574
  • 35 Parker G J, Roberts C, Macdonald A et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI.  Magn Reson Med. 2006;  56 993-1000
  • 36 Brix G, Semmler W, Port R et al. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging.  J Comput Assist Tomogr. 1991;  15 621-628
  • 37 Lüdemann L, Prochnow D, Rohlfing T et al. Simultaneous Quantification of Perfusion and Permeability in the Prostate Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging with an Inversion-Prepared Dual-Contrast Sequence.  Ann Biomed Eng. 2009;  37 749-762
  • 38 Franiel T, Lüdemann L, Rudolph B et al. Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence.  Invest Radiol. 2008;  43 481-487
  • 39 Franiel T, Lüdemann L, Rudolph B et al. Prostate MR imaging: tissue characterization with pharmacokinetic volume and blood flow parameters and correlation with histologic parameters.  Radiology. 2009;  252 101-108
  • 40 Buckley D L, Roberts C, Parker G J et al. Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T 1-weighted MR imaging – initial experience.  Radiology. 2004;  233 709-715
  • 41 Riches S F, Payne G S, Morgan V A et al. MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters.  Am J Roentgenol. 2009;  193 1583-1591
  • 42 Dorsten F A, Graaf van M, Engelbrecht van der M R et al. Combined quantitative dynamic contrast-enhanced MR imaging and (1)H MR spectroscopic imaging of human prostate cancer.  J Magn Reson Imaging. 2004;  20 279-287
  • 43 Heijmink S W, Fütterer J J, Hambrock T et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3T – comparison of image quality, localization, and staging performance.  Radiology. 2007;  244 184-195
  • 44 Beyersdorff D, Taymoorian K, Knosel T et al. MRI of prostate cancer at 1.5 and 3.0T: comparison of image quality in tumor detection and staging.  Am J Roentgenol. 2005;  185 1214-1220
  • 45 Tanimoto A, Nakashima J, Kohno H et al. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T 2-weighted imaging.  J Magn Reson Imaging. 2007;  25 146-152
  • 46 Kumar R, Nayyar R, Kumar V et al. Potential of magnetic resonance spectroscopic imaging in predicting absence of prostate cancer in men with serum prostate-specific antigen between 4 and 10 ng/ml: a follow-up study.  Urology. 2008;  72 859-863
  • 47 Prando A, Kurhanewicz J, Borges A P et al. Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients with elevated prostate specific antigen levels and prior negative biopsy findings: early experience.  Radiology. 2005;  236 903-910
  • 48 Zangos S, Eichler K, Thalhammer A et al. Aktueller Stand der MR-gesteuerten Prostata-Interventionen.  Fortschr Röntgenstr. 2010;  182 947-953
  • 49 Franiel T, Stephan C, Erbersdobler A et al. Areas suspicious for prostate cancer: MR-guided biopsy of the prostate in patients with at least one transrectal US-guided biopsy with a negative finding – multiparametric MR Imaging for detection and biopsy planning.  Radiology. 2011;  ; In Press
  • 50 Hricak H, Wang L, Wei D C et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy.  Cancer. 2004;  100 2655-2663
  • 51 Röthke M, Lichy M, Schilling D et al. Klinische Wertigkeit der endorektalen MRT vor geplanter nerverhaltender radikaler Prostatektomie.  Fortschr Röntgenstr. 2009;  181 S243
  • 52 Nakashima J, Tanimoto A, Imai Y et al. Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer.  Urology. 2004;  64 101-105
  • 53 Zakian K L, Sircar K, Hricak H et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy.  Radiology. 2005;  234 804-814
  • 54 Bloch B N, Furman-Haran E, Helbich T H et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T 2-weighted MR imaging – initial results.  Radiology. 2007;  245 176-185
  • 55 Yu K K, Scheidler J, Hricak H et al. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging.  Radiology. 1999;  213 481-488
  • 56 Wang L, Hricak H, Kattan M W et al. Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms.  Radiology. 2006;  238 597-603
  • 57 D’Amico A V, Whittington R, Malkowicz S B et al. Biochemical outcome after radical prostatectomy or external beam radiation therapy for patients with clinically localized prostate carcinoma in the prostate specific antigen era.  Cancer. 2002;  95 281-286
  • 58 Sella T, Schwartz L H, Swindle P W et al. Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging.  Radiology. 2004;  231 379-385
  • 59 Pucar D, Hricak H, Shukla-Dave A et al. Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence.  Int J Radiat Oncol Biol Phys. 2007;  69 62-69
  • 60 Coakley F V, Teh H S, Qayyum A et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience.  Radiology. 2004;  233 441-448
  • 61 Kim C K, Park B K, Lee H M. Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3 T diffusion-weighted MRI.  J Magn Reson Imaging. 2009;  29 391-397
  • 62 Haider M A, Chung P, Sweet J et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy.  Int J Radiat Oncol Biol Phys. 2008;  70 425-430
  • 63 Sciarra A, Panebianco V, Salciccia S et al. Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer.  Eur Urol. 2008;  54 589-600
  • 64 Cirillo S, Petracchini M, Scotti L et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T 2-weighted and contrast-enhanced imaging.  Eur Radiol. 2009;  19 761-769
  • 65 Shukla-Dave A, Hricak H, Eberhardt S C et al. Chronic prostatitis: MR imaging and 1 H MR spectroscopic imaging findings – initial observations.  Radiology. 2004;  231 717-724
  • 66 Kulkarni G S, Lockwood G, Evans A et al. Clinical predictors of Gleason score upgrading: implications for patients considering watchful waiting, active surveillance, or brachytherapy.  Cancer. 2007;  109 2432-2438
  • 67 Franiel T, Lüdemann L, Taupitz M et al. Pharmakokinetische MRT der Prostata: Parameter zur Unterscheidung von Low-grade- und High-grade-Prostatakarzinomen.  Fortschr Röntgenstr. 2009;  181 536-542
  • 68 D’Amico A V, Chang H, Holupka E et al. Calculated prostate cancer volume: the optimal predictor of actual cancer volume and pathologic stage.  Urology. 1997;  49 385-391
  • 69 Coakley F V, Kurhanewicz J, Lu Y et al. Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging.  Radiology. 2002;  223 91-97
  • 70 Mazaheri Y, Hricak H, Fine S W et al. Prostate tumor volume measurement with combined T 2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume.  Radiology. 2009;  252 449-457
  • 71 Zhang J, Hricak H, Shukla-Dave A et al. Clinical stage T 1c prostate cancer: evaluation with endorectal MR imaging and MR spectroscopic imaging.  Radiology. 2009;  253 425-434
  • 72 Shukla-Dave A, Hricak H, Kattan M W et al. The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis.  BJU Int. 2007;  99 786-793

Dr. Tobias Franiel

Radiologie CCM, Charité – Universitätsmedizin Berlin

Schumannstraße 20 / 21

10098 Berlin

Telefon: ++ 49/30/4 50 52 70 18

Fax: ++ 49/30/4 50 52 79 10

eMail: tobias.franiel@charite.de