Handchir Mikrochir Plast Chir 2010; 42(6): 369-373
DOI: 10.1055/s-0030-1248310
Fallbericht

© Georg Thieme Verlag KG Stuttgart · New York

Rekonstruktion der Kalvaria durch ein präfabriziertes bioaktives Implantat

Calvarial Reconstruction by Customized Bioactive ImplantF. A. Probst1 , D. W. Hutmacher2 , D. F. Müller3 , H.-G. Machens3 , J.-T. Schantz3
  • 1Ludwig-Maximilians-Universität, Klinik für Mund-, Kiefer- und Gesichtschirurgie, München
  • 2Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
  • 3Klinik und Poliklinik für plastische Chirurgie und Handchirurgie, Technische Universität München
Further Information

Publication History

eingereicht 15.6.2009

akzeptiert 21.1.2010

Publication Date:
10 March 2010 (online)

Zusammenfassung

Ossäre kraniofaziale Defekte sind eine häufige Komplikation nach operativer Korrektur von Kraniosynostosen. Im vorgestellten Fall wird über die Rekonstruktion der Kalvaria durch ein passgenaues computer-gestützt präfabriziertes bioaktives Implantat berichtet. Mittels Fused-Deposition-Modeling, einer Rapid Prototyping Technologie, erfolgte präoperativ nach computertomografischer Bildgebung die computer-gestützte Formgestaltung und Herstellung eines biodegradierbaren medical grade PCL–TCP-Implantates (CAD/CAM-Verfahren). Dieses konnte intraoperativ passgenau eingesetzt werden. Eine CT-Kontrollaufnahme nach sechs Monaten zeigte eine beginnende ossäre Konsolidierung, es war kein Defektbereich mehr zu tasten und der rekonstruierte Bereich fügte sich nahtlos in die natürliche anatomische Form der Kalvaria ein.

Abstract

Osseous craniofacial defects are commonly seen problems after operative treatment of craniosynostoses. This case report describes a calvarial reconstruction by means of computer-aided fabrication of a customised implant. Three-dimensional imaging is followed by computer-aided design and fabrication of a medical grade PCL–TCP biodegradable scaffold using the rapid prototyping technology fused deposition modelling (CAD/CAM). After six months the implant was well integrated, no defect area could be palpated any more and a beginning bony consolidation could be detected via CT.

Literatur

  • 1 Burstein FD, Williams KJ, Hudgins R. et al . Hydroxyapatitecement in craniofacial reconstruction: Experience in 150 patients.  Plast Reconstr Surg. 2006;  118 484-489
  • 2 Chao MT, Jiang S, Smith D. et al . Demineralized bone matrix and resorbable mesh bilaminate cranioplasty: a novel method for reconstruction of large-scale defects in the pediatric calvaria.  Plast Reconstr Surg. 2009;  123 976-982
  • 3 Chim H, Schantz JT. New frontiers in calvarial reconstruction: integrating computer-assisted design and tissue engineering in cranioplasty.  Plast Reconstr Surg. 2005;  116 1726-1741
  • 4 Cutting C, Bookstein FL, Grayson B. et al . Threedimensional computer-assisted design of craniofacial surgical procedures: Optimization and interaction with cephalometric and computed tomographicbased models.  Plast Reconstr Surg. 1986;  77 877-887
  • 5 Davies JE, Baksh D. Bone tissue engineering and biodegradable scaffolds.. In: Ikada Y, Shimizu Y Tissue Engineering for Therapeutic Use Amsterdam: Elsevier Science; 2000. 15
  • 6 Eppley BL, Kilgo M, Coleman JJ. Cranial reconstruction with computer-generated hard-tissue replacement patient-matched implants: Indications, surgical technique, and long-term follow-up.  Plast Reconstr Surg. 2002;  109 864-871
  • 7 Eufinger H, Wehmoller M. Individual prefabricated titanium implants in reconstructive craniofacial surgery: Clinical and technical aspects of the first 22 cases.  Plast Reconstr Surg. 1998;  102 300-308
  • 8 Gatti AM, Zaffe D, Poli GP. Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects.  Biomaterials. 1990;  11 513-517
  • 9 Hutmacher DW, Schantz T, Zein I. et al . Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.  J Biomed Mater Res. 2001;  55 203-216
  • 10 Kellman RM. Safe and dependable harvesting of large outer-table calvarial bone grafts.  Arch Otolaryngol Head Neck Surg. 1994;  8 856-860
  • 11 Lao LL, Venkatraman SS, Peppas NA. Modeling of drug release from biodegradable polymer blends.  Eur J Pharm Biopharm. 2008;  70 796-803
  • 12 Laurie SW, Kaban LB, Mulliken JB. et al . Donor site morbidity after harvesting rib and iliac bone.  Plast Reconstr Surg. 1984;  73 933-938
  • 13 Perrin DE, English JP. Polycaprolactone.. In: Domb AJ, Kost J, Wiseman DM Handbook of Biodegradable Polymers. Amsterdam: Haarwood; 1998: 63-77
  • 14 Pitt CG, Schindler A. Biodegradation of polymers.. In: Bruck SD Controlled Drug Delivery. Boca Raton: CRC Press; 1983: 55-80
  • 15 Sawyer AA, Song SJ, Susanto E. et al . The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2.  Biomaterials. 2009;  30 2479-2488
  • 16 Schantz JT, Hutmacher DW, Lam CX. et al . Repair of calvarial defects with customized tissue-engineered bone grafts: II. Evaluation of cellular efficiency and efficacy in vivo.  Tissue Eng. 2003;  9 (S 01) 127-139
  • 17 Schmidmaier G, Wildemann B, Lubberstedt M. et al . IGF-I and TGF-beta 1 incorporated in a poly(D,L-lactide) implant coating stimulates osteoblast differentiation and collagen-1 production but reduces osteoblast proliferation in cell culture.  J Biomed Mater Res B Appl Biomater. 2003;  65 157-162
  • 18 Schmidmaier G, Wildemann B, Stemberger A. et al . Biodegradable poly(D,L-lactide) coating of implants for continuous release of growth factors.  J Biomed Mater Res. 2001;  58 449-455
  • 19 Schmitz HJ, Tolxdorff T, Honsbrok J. et al .3D-based computer assisted manufacturing of individual alloplastic implants for cranial and maxillofacial osteoplasties.. In: Lemke HU, Rhodes ML, Jaffe CC, Felix R Computer-Assisted Radiology CAR ’89. Berlin: Springer; 1989: 390-397
  • 20 Selber JC, Brooks C, Kurichi JE. et al . Long-term results following fronto-orbital reconstruction in nonsyndromic unicoronal synostosis.  Plast Reconstr Surg. 2008;  121 251e-260e
  • 21 Smith DM, Cooper GM, Mooney MP. et al . Bone morphogenetic protein 2 therapy for craniofacial surgery: A practical review.  J Craniofac Surg. 2008;  19 1244-1259
  • 22 Springer IN, Acil Y, Kuchenbecker S. et al . Bone graft versus BMP-7 in a critical size defect--cranioplasty in a growing infant model.  Bone. 2005;  37 563-569
  • 23 Thomson RC, Yaszemski MJ, Powers JM. et al . Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.  Biomaterials. 1998;  19 1935-1943
  • 24 Toth BA, Ellis DS, Stewart WB. Computer-designed prostheses for orbitocranial reconstruction.  Plast Reconstr Surg. 1988;  81 315-324
  • 25 Urist MR. The search for and the discovery of bone morphogenetic protein (BMP).. In: Urist MR, O’Connor BT, Burwell RG Bone Grafts, Derivatives and Substitutes. Oxford: Butterworth-Heinemann Ltd; 1994
  • 26 Vandamme TF, Legras R. Physico-mechanical properties of poly(-caprolactone) for the construction of rumino-reticulum devices for grazing animals.  Biomaterials. 1995;  16 1395-1400
  • 27 Vannier MW, Marsh JL, Warren JO. Threedimensional CT reconstruction images for craniofacial surgical planning and evaluation.  Radiology. 1984;  150 179-1184
  • 28 Zein I, Hutmacher DW, Tan KC. et al . Fused deposition modeling of novel scaffold architectures for tissue engineering applications.  Biomaterials. 2002;  23 1169-1185
  • 29 Zhou Y, Hutmacher DW, Varawan S-L. et al . In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites.  Polym Int. 2007;  56 333-342

Korrespondenzadresse

Dr. Florian Andreas ProbstMD, DMD 

Klinik für Mund-, Kiefer- und Gesichtschirurgie

Ludwig-Maximilians-Universität

Lindwurm Straße 2a

80337 München

Email: Florian.Probst@med.uni-muenchen.de