RSS-Feed abonnieren
DOI: 10.1055/s-0030-1248310
© Georg Thieme Verlag KG Stuttgart · New York
Rekonstruktion der Kalvaria durch ein präfabriziertes bioaktives Implantat
Calvarial Reconstruction by Customized Bioactive ImplantPublikationsverlauf
eingereicht 15.6.2009
akzeptiert 21.1.2010
Publikationsdatum:
10. März 2010 (online)

Zusammenfassung
Ossäre kraniofaziale Defekte sind eine häufige Komplikation nach operativer Korrektur von Kraniosynostosen. Im vorgestellten Fall wird über die Rekonstruktion der Kalvaria durch ein passgenaues computer-gestützt präfabriziertes bioaktives Implantat berichtet. Mittels Fused-Deposition-Modeling, einer Rapid Prototyping Technologie, erfolgte präoperativ nach computertomografischer Bildgebung die computer-gestützte Formgestaltung und Herstellung eines biodegradierbaren medical grade PCL–TCP-Implantates (CAD/CAM-Verfahren). Dieses konnte intraoperativ passgenau eingesetzt werden. Eine CT-Kontrollaufnahme nach sechs Monaten zeigte eine beginnende ossäre Konsolidierung, es war kein Defektbereich mehr zu tasten und der rekonstruierte Bereich fügte sich nahtlos in die natürliche anatomische Form der Kalvaria ein.
Abstract
Osseous craniofacial defects are commonly seen problems after operative treatment of craniosynostoses. This case report describes a calvarial reconstruction by means of computer-aided fabrication of a customised implant. Three-dimensional imaging is followed by computer-aided design and fabrication of a medical grade PCL–TCP biodegradable scaffold using the rapid prototyping technology fused deposition modelling (CAD/CAM). After six months the implant was well integrated, no defect area could be palpated any more and a beginning bony consolidation could be detected via CT.
Schlüsselwörter
Kraniosynostosen - kraniofaziale Chirurgie - Kopf-Hals-Fehlbildungschirurgie - Rapid Prototyping - CAD/CAM - PCL-TCP
Key words
craniosynostoses - craniofacial surgery - surgery of head and neck malformations - rapid prototyping - CAD/CAM - PCL-TCP
Literatur
- 1
Burstein FD, Williams KJ, Hudgins R. et al .
Hydroxyapatitecement in craniofacial reconstruction: Experience in 150 patients.
Plast Reconstr Surg.
2006;
118
484-489
MissingFormLabel
- 2
Chao MT, Jiang S, Smith D. et al .
Demineralized bone matrix and resorbable mesh bilaminate cranioplasty: a novel method
for reconstruction of large-scale defects in the pediatric calvaria.
Plast Reconstr Surg.
2009;
123
976-982
MissingFormLabel
- 3
Chim H, Schantz JT.
New frontiers in calvarial reconstruction: integrating computer-assisted design and
tissue engineering in cranioplasty.
Plast Reconstr Surg.
2005;
116
1726-1741
MissingFormLabel
- 4
Cutting C, Bookstein FL, Grayson B. et al .
Threedimensional computer-assisted design of craniofacial surgical procedures: Optimization
and interaction with cephalometric and computed tomographicbased models.
Plast Reconstr Surg.
1986;
77
877-887
MissingFormLabel
- 5 Davies JE, Baksh D. Bone tissue engineering and biodegradable scaffolds.. In: Ikada Y, Shimizu Y Tissue Engineering for Therapeutic Use Amsterdam: Elsevier Science; 2000. 15
MissingFormLabel
- 6
Eppley BL, Kilgo M, Coleman JJ.
Cranial reconstruction with computer-generated hard-tissue replacement patient-matched
implants: Indications, surgical technique, and long-term follow-up.
Plast Reconstr Surg.
2002;
109
864-871
MissingFormLabel
- 7
Eufinger H, Wehmoller M.
Individual prefabricated titanium implants in reconstructive craniofacial surgery:
Clinical and technical aspects of the first 22 cases.
Plast Reconstr Surg.
1998;
102
300-308
MissingFormLabel
- 8
Gatti AM, Zaffe D, Poli GP.
Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects.
Biomaterials.
1990;
11
513-517
MissingFormLabel
- 9
Hutmacher DW, Schantz T, Zein I. et al .
Mechanical properties and cell cultural response of polycaprolactone scaffolds designed
and fabricated via fused deposition modeling.
J Biomed Mater Res.
2001;
55
203-216
MissingFormLabel
- 10
Kellman RM.
Safe and dependable harvesting of large outer-table calvarial bone grafts.
Arch Otolaryngol Head Neck Surg.
1994;
8
856-860
MissingFormLabel
- 11
Lao LL, Venkatraman SS, Peppas NA.
Modeling of drug release from biodegradable polymer blends.
Eur J Pharm Biopharm.
2008;
70
796-803
MissingFormLabel
- 12
Laurie SW, Kaban LB, Mulliken JB. et al .
Donor site morbidity after harvesting rib and iliac bone.
Plast Reconstr Surg.
1984;
73
933-938
MissingFormLabel
- 13 Perrin DE, English JP. Polycaprolactone.. In: Domb AJ, Kost J, Wiseman DM Handbook of Biodegradable Polymers. Amsterdam: Haarwood; 1998: 63-77
MissingFormLabel
- 14 Pitt CG, Schindler A. Biodegradation of polymers.. In: Bruck SD Controlled Drug Delivery. Boca Raton: CRC Press; 1983: 55-80
MissingFormLabel
- 15
Sawyer AA, Song SJ, Susanto E. et al .
The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds
loaded with rhBMP-2.
Biomaterials.
2009;
30
2479-2488
MissingFormLabel
- 16
Schantz JT, Hutmacher DW, Lam CX. et al .
Repair of calvarial defects with customized tissue-engineered bone grafts: II. Evaluation
of cellular efficiency and efficacy in vivo.
Tissue Eng.
2003;
9
(S 01)
127-139
MissingFormLabel
- 17
Schmidmaier G, Wildemann B, Lubberstedt M. et al .
IGF-I and TGF-beta 1 incorporated in a poly(D,L-lactide) implant coating stimulates
osteoblast differentiation and collagen-1 production but reduces osteoblast proliferation
in cell culture.
J Biomed Mater Res B Appl Biomater.
2003;
65
157-162
MissingFormLabel
- 18
Schmidmaier G, Wildemann B, Stemberger A. et al .
Biodegradable poly(D,L-lactide) coating of implants for continuous release of growth
factors.
J Biomed Mater Res.
2001;
58
449-455
MissingFormLabel
- 19 Schmitz HJ, Tolxdorff T, Honsbrok J. et al .3D-based computer assisted manufacturing of individual alloplastic implants for cranial
and maxillofacial osteoplasties.. In: Lemke HU, Rhodes ML, Jaffe CC, Felix R Computer-Assisted Radiology CAR ’89. Berlin: Springer; 1989: 390-397
MissingFormLabel
- 20
Selber JC, Brooks C, Kurichi JE. et al .
Long-term results following fronto-orbital reconstruction in nonsyndromic unicoronal
synostosis.
Plast Reconstr Surg.
2008;
121
251e-260e
MissingFormLabel
- 21
Smith DM, Cooper GM, Mooney MP. et al .
Bone morphogenetic protein 2 therapy for craniofacial surgery: A practical review.
J Craniofac Surg.
2008;
19
1244-1259
MissingFormLabel
- 22
Springer IN, Acil Y, Kuchenbecker S. et al .
Bone graft versus BMP-7 in a critical size defect--cranioplasty in a growing infant
model.
Bone.
2005;
37
563-569
MissingFormLabel
- 23
Thomson RC, Yaszemski MJ, Powers JM. et al .
Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.
Biomaterials.
1998;
19
1935-1943
MissingFormLabel
- 24
Toth BA, Ellis DS, Stewart WB.
Computer-designed prostheses for orbitocranial reconstruction.
Plast Reconstr Surg.
1988;
81
315-324
MissingFormLabel
- 25 Urist MR. The search for and the discovery of bone morphogenetic protein (BMP).. In: Urist MR, O’Connor BT, Burwell RG Bone Grafts, Derivatives and Substitutes. Oxford: Butterworth-Heinemann Ltd; 1994
MissingFormLabel
- 26
Vandamme TF, Legras R.
Physico-mechanical properties of poly(-caprolactone) for the construction of rumino-reticulum
devices for grazing animals.
Biomaterials.
1995;
16
1395-1400
MissingFormLabel
- 27
Vannier MW, Marsh JL, Warren JO.
Threedimensional CT reconstruction images for craniofacial surgical planning and evaluation.
Radiology.
1984;
150
179-1184
MissingFormLabel
- 28
Zein I, Hutmacher DW, Tan KC. et al .
Fused deposition modeling of novel scaffold architectures for tissue engineering applications.
Biomaterials.
2002;
23
1169-1185
MissingFormLabel
- 29
Zhou Y, Hutmacher DW, Varawan S-L. et al .
In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium
phosphate composites.
Polym Int.
2007;
56
333-342
MissingFormLabel
Korrespondenzadresse
Dr. Florian Andreas ProbstMD, DMD
Klinik für Mund-, Kiefer- und Gesichtschirurgie
Ludwig-Maximilians-Universität
Lindwurm Straße 2a
80337 München
eMail: Florian.Probst@med.uni-muenchen.de