Pharmacopsychiatry 2010; 43: S50-S60
DOI: 10.1055/s-0030-1248317
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Computational Modeling of Synaptic Neurotransmission as a Tool for Assessing Dopamine Hypotheses of Schizophrenia

Z. Qi1 , 2 , 3 , G. W. Miller3 , 4 , E. O. Voit1 , 2
  • 1Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, USA
  • 2Integrative Bio Systems Institute, Georgia Institute of Technology, Atlanta, GA, USA
  • 3Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
  • 4Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. Mai 2010 (online)

Abstract

Schizophrenia is a severe and complex mental disorder that causes an enormous societal and financial burden. Following the identification of dopamine as a neurotransmitter and the invention of antipsychotic drugs, the dopamine hypothesis was formulated to suggest hyperdopaminergia as the cause of schizophrenia. Over time there have been modifications and improvements to the dopamine-based model of schizophrenia, as well as models that do not implicate dopamine dysregulation as a primary cause of the disease. It seems clear by now that disruption of dopamine homeostasis occurs in schizophrenia and likely plays a major contributory role to its symptoms. Three primary versions of the dopamine hypothesis of schizophrenia have been proposed. In this article, we review these hypotheses and subject their assumptions to a computational model of dopamine signaling. Based on this review and analysis, we propose slight revisions to the existing hypotheses. Although we are still at the beginning of a comprehensive modeling effort to capture relevant phenomena associated with schizophrenia, our preliminary models have already yielded intriguing results and identified the systems biological approach as a beneficial complement to clinical and experimental research and a powerful method for exploring human diseases like schizophrenia. It is hoped that the past, present and future models will support and guide refined experimentation and lead to a deeper understanding of schizophrenia.

References

  • 1 Mental Health Report 2001. .In, Mental Health: New Understanding, New Hope Geneva: World Health Organization; 2001
  • 2 Abi-Dargham A, Gil R, Krystal J. et al . Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort.  Am J Psychiatry. 1998;  155 761-767
  • 3 Abi-Dargham A, Rodenhiser J, Printz D. et al . Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.  Proc Natl Acad Sci USA. 2000;  97 8104-8109
  • 4 Aleman A, Kahn RS, Selten JP. Sex differences in the risk of schizophrenia: evidence from meta-analysis.  Arch Gen Psychiatry. 2003;  60 565-571
  • 5 Ballard TM, Pauly-Evers M, Higgins GA. et al . Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity.  J Neurosci. 2002;  22 6713-6723
  • 6 Barbano PE, Spivak M, Flajolet M. et al . A mathematical tool for exploring the dynamics of biological networks.  Proc Natl Acad Sci USA. 2007;  104 19169-19174
  • 7 Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?.  Brain Res Brain Res Rev. 1998;  28 309-369
  • 8 Breier A, Su TP, Saunders R. et al . Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method.  Proc Natl Acad Sci USA. 1997;  94 2569-2574
  • 9 Carlsson A. The occurrence, distribution and physiological role of catecholamines in the nervous system.  Pharmacol Rev. 1959;  11 490-493
  • 10 Carlsson A, Lindqvist M. Effect of Chlorpromazine or Haloperidol on Formation of 3methoxytyramine and Normetanephrine in Mouse Brain.  Acta Pharmacol Toxicol (Copenh). 1963;  20 140-144
  • 11 Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists.  Nature. 1957;  180 1200
  • 12 Chen K, Holschneider DP, Wu W. et al . A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior.  J Biol Chem. 2004;  279 39645-39652
  • 13 Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs.  Science. 1976;  192 481-483
  • 14 Davidson LL, Heinrichs RW. Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis.  Psychiatry Res. 2003;  122 69-87
  • 15 Davis KL, Kahn RS, Ko G. et al . Dopamine in schizophrenia: a review and reconceptualization.  Am J Psychiatry. 1991;  148 1474-1486
  • 16 Delay J, Deniker P, Harl JM. Therapeutic use in psychiatry of phenothiazine of central elective action (4560 RP).  Ann Med Psychol (Paris). 1952;  110 112-117
  • 17 Dhavan R, Greer PL, Morabito MA. et al . The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner.  J Neurosci. 2002;  22 7879-7891
  • 18 Du W, Aloyo VJ, Pazdelski PS. et al . Effects of prenatal cocaine exposure on amphetamine-induced dopamine release in the caudate nucleus of the adult rabbit.  Brain Res. 1999;  836 194-198
  • 19 Fernandez E, Schiappa R, Girault JA. et al . DARPP-32 Is a Robust Integrator of Dopamine and Glutamate Signals.  PLoS Comput Biol. 2006;  2 e176
  • 20 Fon EA, Pothos EN, Sun BC. et al . Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action.  Neuron. 1997;  19 1271-1283
  • 21 Frankle WG, Laruelle M. Neuroreceptor imaging in psychiatric disorders.  Ann Nucl Med. 2002;  16 437-446
  • 22 Girault JA, Spampinato U, Savaki HE. et al . In vivo release of [3H] gamma-aminobutyric acid in the rat neostriatum – I. Characterization and topographical heterogeneity of the effects of dopaminergic and cholinergic agents.  Neuroscience. 1986;  19 1101-1108
  • 23 Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade.  Neuron. 1999;  23 435-447
  • 24 Hall FS, Wilkinson LS, Humby T. et al . Isolation rearing in rats: pre- and postsynaptic changes in striatal dopaminergic systems.  Pharmacol Biochem Behav. 1998;  59 859-872
  • 25 Hall FS, Wilkinson LS, Humby T. et al . Maternal deprivation of neonatal rats produces enduring changes in dopamine function.  Synapse. 1999;  32 37-43
  • 26 Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence.  Mol Psychiatry. 2005;  10 40-68 image 45
  • 27 Heinz A. Anhedonia – a general nosology surmounting correlate of a dysfunctional dopaminergic reward system?.  Nervenarzt. 1999;  70 391-398
  • 28 Hemmings Jr. HC, Greengard P, Tung HY. et al . DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1.  Nature. 1984;  310 503-505
  • 29 Hietala J, Syvalahti E, Vilkman H. et al . Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia.  Schizophr Res. 1999;  35 41-50
  • 30 Hietala J, Syvalahti E, Vuorio K. et al . Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients.  Lancet. 1995;  346 1130-1131
  • 31 Hines ML, Markram H, Schurmann F. Fully implicit parallel simulation of single neurons.  J Comput Neurosci. 2008;  25 439-448
  • 32 Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – the final common pathway.  Schizophr Bull. 2009;  35 549-562
  • 33 Howes OD, Montgomery AJ, Asselin MC. et al . Elevated striatal dopamine function linked to prodromal signs of schizophrenia.  Arch Gen Psychiatry. 2009;  66 13-20
  • 34 Javitt DC, Steinschneider M, Schroeder CE. et al . Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia.  Proc Natl Acad Sci USA. 1996;  93 11962-11967
  • 35 Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia.  Am J Psychiatry. 1991;  148 1301-1308
  • 36 Jones RS, Buhl EH. Basket-like interneurones in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation.  Neurosci Lett. 1993;  149 35-39
  • 37 Jones SR, Gainetdinov RR, Jaber M. et al . Profound neuronal plasticity in response to inactivation of the dopamine transporter.  Proc Natl Acad Sci USA. 1998;  95 4029-4034
  • 38 Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia.  Am J Psychiatry. 2003;  160 13-23
  • 39 Kapur S, Mizrahi R, Li M. From dopamine to salience to psychosis – linking biology, pharmacology and phenomenology of psychosis.  Schizophr Res. 2005;  79 59-68
  • 40 Kapur S, Remington G. Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient.  Biol Psychiatry. 2001;  50 873-883
  • 41 Kehoe P, Clash K, Skipsey K. et al . Brain dopamine response in isolated 10-day-old rats: assessment using D2 binding and dopamine turnover.  Pharmacol Biochem Behav. 1996;  53 41-49
  • 42 Kehoe P, Shoemaker WJ, Triano L. et al . Repeated isolation in the neonatal rat produces alterations in behavior and ventral striatal dopamine release in the juvenile after amphetamine challenge.  Behav Neurosci. 1996;  110 1435-1444
  • 43 Kerokoski P, Suuronen T, Salminen A. et al . Cleavage of the cyclin-dependent kinase 5 activator p35 to p25 does not induce tau hyperphosphorylation.  Biochem Biophys Res Commun. 2002;  298 693-698
  • 44 Kesavapany S, Li BS, Amin N. et al . Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide.  Biochim Biophys Acta. 2004;  1697 143-153
  • 45 Kestler LP, Walker E, Vega EM. Dopamine receptors in the brains of schizophrenia patients: a meta-analysis of the findings.  Behav Pharmacol. 2001;  12 355-371
  • 46 Krystal JH, Karper LP, Seibyl JP. et al . Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.  Arch Gen Psychiatry. 1994;  51 199-214
  • 47 Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies.  J Psychopharmacol. 1999;  13 358-371
  • 48 Laruelle M, Abi-Dargham A, van Dyck CH. et al . Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects.  Proc Natl Acad Sci USA. 1996;  93 9235-9240
  • 49 Lencz T, Morgan TV, Athanasiou M. et al . Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia.  Mol Psychiatry. 2007;  12 572-580
  • 50 Leuner K, Müller WE. The complexity of the dopaminergic synapses and their modulation by antipsychotics.  Pharmacopsychiatry. 2006;  39 S15-S20
  • 51 Lewandowski KE. Relationship of catechol-o-methyltransferase to schizophrenia and its correlates: evidence for associations and complex interactions.  Harv Rev Psychiatry. 2007;  15 233-244
  • 52 Lieberman JA, Stroup TS, McEvoy JP. et al . Effectiveness of antipsychotic drugs in patients with chronic schizophrenia.  N Engl J Med. 2005;  353 1209-1223
  • 53 Lindskog M, Kim M, Wikstrom MA. et al . Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation.  PLoS Comput Biol. 2006;  2 e119
  • 54 Lindstrom LH, Gefvert O, Hagberg G. et al . Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET.  Biol Psychiatry. 1999;  46 681-688
  • 55 Loeffler DA, LeWitt PA, DeMaggio AJ. et al . Markers of dopamine depletion and compensatory response in striatum and cerebrospinal fluid.  J Neural Transm Park Dis Dement Sect. 1995;  9 45-53
  • 56 MacDonald AW, Schulz SC. What we know: findings that every theory of schizophrenia should explain.  Schizophr Bull. 2009;  35 493-508
  • 57 Martin-Soelch C, Leenders KL, Chevalley AF. et al . Reward mechanisms in the brain and their role in dependence: evidence from neurophysiological and neuroimaging studies.  Brain Res Brain Res Rev. 2001;  36 139-149
  • 58 McGowan S, Lawrence AD, Sales T. et al . Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study.  Arch Gen Psychiatry. 2004;  61 134-142
  • 59 McGuire P, Howes OD, Stone J. et al . Functional neuroimaging in schizophrenia: diagnosis and drug discovery.  Trends Pharmacol Sci. 2008;  29 91-98
  • 60 Meyer-Lindenberg A, Miletich RS, Kohn PD. et al . Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia.  Nat Neurosci. 2002;  5 267-271
  • 61 Mohn AR, Gainetdinov RR, Caron MG. et al . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia.  Cell. 1999;  98 427-436
  • 62 Molero P, Ortuno F, Zalacain M. et al . Clinical involvement of catechol-O-methyltransferase polymorphisms in schizophrenia spectrum disorders: influence on the severity of psychotic symptoms and on the response to neuroleptic treatment.  Pharmacogenomics J. 2007;  7 418-426
  • 63 Morgan D, Grant KA, Gage HD. et al . Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration.  Nat Neurosci. 2002;  5 169-174
  • 64 O'Donovan MC, Craddock N, Norton N. et al . Identification of loci associated with schizophrenia by genome-wide association and follow-up.  Nat Genet. 2008;  40 1053-1055
  • 65 Pacchioni AM, Cador M, Bregonzio C. et al . A glutamate-dopamine interaction in the persistent enhanced response to amphetamine in nucleus accumbens core but not shell following a single restraint stress.  Neuropsychopharmacology. 2007;  32 682-692
  • 66 Parwani A, Weiler MA, Blaxton TA. et al . The effects of a subanesthetic dose of ketamine on verbal memory in normal volunteers.  Psychopharmacology (Berl). 2005;  183 265-274
  • 67 Patil ST, Zhang L, Martenyi F. et al . Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial.  Nat Med. 2007;  13 1102-1107
  • 68 Perry TL, Kish SJ, Buchanan J. et al . Gamma-aminobutyric-acid deficiency in brain of schizophrenic patients.  Lancet. 1979;  1 237-239
  • 69 Qi Z, Miller GW, Voit EO. Computational systems analysis of dopamine metabolism.  PLoS ONE. 2008;  3 e2444
  • 70 Qi Z, Miller GW, Voit EO. A mathematical model of presynaptic dopamine homeostasis: implications for schizophrenia.  Pharmacopsychiatry. 2008;  41 (S 01) S89-98
  • 71 Qi Z, Miller GW, Voit EO. Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals.  Synapse. 2009;  63 1133-1142
  • 72 Qi Z, Miller GW, Voit EO. Internal state of medium spiny neurons varies in response to different input signals.  BMC Systems Biology. 2010;  4 26
  • 73 Reith J, Benkelfat C, Sherwin A. et al . Elevated dopa decarboxylase activity in living brain of patients with psychosis.  Proc Natl Acad Sci USA. 1994;  91 11651-11654
  • 74 Robbins TW, Everitt BJ. Functional studies of the central catecholamines.  Int Rev Neurobiol. 1982;  23 303-365
  • 75 Robbins TW, Everitt BJ. Neurobehavioural mechanisms of reward and motivation.  Curr Opin Neurobiol. 1996;  6 228-236
  • 76 Roiser JP, Stephan KE, den Ouden HE. et al . Do patients with schizophrenia exhibit aberrant salience?.  Psychol Med. 2009;  39 199-209
  • 77 Saraceno B. The WHO World Health Report 2001 on mental health.  Epidemiol Psichiatr Soc. 2002;  11 83-87
  • 78 Savageau MA. Biochemical systems analysis I Some mathematical properties of the rate law for the component enzymatic reactions.  J Theor Biol. 1969;  25 365-369
  • 79 Savageau MA. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation.  J Theor Biol. 1969;  25 370-379
  • 80 Savageau MA. Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation.  J Theor Biol. 1970;  26 215-226
  • 81 Savageau MA. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology Reading.. MA: Addison-Wesley; 1976: 199
  • 82 Savageau MA, Voit EO. Recasting nonlinear differential equations as S-systems: a canonical nonlinear form.  Math Biosci. 1987;  87 83-115
  • 83 Schultz W. Getting formal with dopamine and reward.  Neuron. 2002;  36 241-263
  • 84 Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward.  Science. 1997;  275 1593-1599
  • 85 Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex.  Prog Neurobiol. 2004;  74 1-58
  • 86 Seeman P, Chau-Wong M, Tedesco J. et al . Brain receptors for antipsychotic drugs and dopamine: direct binding assays.  Proc Natl Acad Sci USA. 1975;  72 4376-4380
  • 87 Seeman P, Lee T, Chau-Wong M. et al . Antipsychotic drug doses and neuroleptic/dopamine receptors.  Nature. 1976;  261 717-719
  • 88 Shelley AM, Ward PB, Catts SV. et al . Mismatch negativity: an index of a preattentive processing deficit in schizophrenia.  Biol Psychiatry. 1991;  30 1059-1062
  • 89 Snyder SH, Banerjee SP, Yamamura HI. et al . Drugs, Neurotransmitters, and Schizophrenia.  Science. 1974;  184 1243-1253
  • 90 Spencer HJ. Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum.  Brain Res. 1976;  102 91-101
  • 91 Ste-Marie L, Vachon L, Bemeur C. et al . Local striatal infusion of MPP+ does not result in increased hydroxylation after systemic administration of 4-hydroxybenzoate.  Free Radic Biol Med. 1999;  27 997-1007
  • 92 Stefansson H, Rujescu D, Cichon S. et al . Large recurrent microdeletions associated with schizophrenia.  Nature. 2008;  455 232-236
  • 93 Sullivan PF. The genetics of schizophrenia.  PLoS Med. 2005;  2 e212
  • 94 Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies.  Arch Gen Psychiatry. 2003;  60 1187-1192
  • 95 Svenningsson P, Nishi A, Fisone G. et al . DARPP-32: an integrator of neurotransmission.  Annu Rev Pharmacol Toxicol. 2004;  44 269-296
  • 96 Takahashi N, Miner LL, Sora I. et al . VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity.  Proc Natl Acad Sci USA. 1997;  94 9938-9943
  • 97 Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, “Just the Facts”: what we know in 2008 part 1: overview.  Schizophr Res. 2008;  100 4-19
  • 98 Tidey JW, Miczek KA. Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study.  Brain Res. 1996;  721 140-149
  • 99 Tuominen HJ, Tiihonen J, Wahlbeck K. Glutamatergic drugs for schizophrenia.  Cochrane Database Syst Rev. 2006;  CD003730
  • 100 Umbricht D, Schmid L, Koller R. et al . Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia.  Arch Gen Psychiatry. 2000;  57 1139-1147
  • 101 van Winkel R, Stefanis NC, Myin-Germeys I. Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction.  Schizophr Bull. 2008;  34 1095-1105
  • 102 Voit EO. ed. Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity.. New York, NY: Van Nostrand Reinhold; 1991. 365 p.
  • 103 Voit EO. Computational analysis of biochemical systems : a practical guide for biochemists and molecular biologists.. Cambridge, U.K.: Cambridge University Press; 2000. 531 p.
  • 104 Voit EO, Qi Z, Miller GW. Steps of modeling complex biological systems.  Pharmacopsychiatry. 2008;  41 (S 01) S78-84
  • 105 Walaas SI, Aswad DW, Greengard P. A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions.  Nature. 1983;  301 69-71
  • 106 Walsh T, McClellan JM, McCarthy SE. et al . Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia.  Science. 2008;  320 539-543
  • 107 Wise RA. Dopamine, learning and motivation.  Nat Rev Neurosci. 2004;  5 483-494
  • 108 Xu B, Roos JL, Levy S. et al . Strong association of de novo copy number mutations with sporadic schizophrenia.  Nat Genet. 2008;  40 880-885
  • 109 Yung KK, Bolam JP. Localization of dopamine D1 and D2 receptors in the rat neostriatum: synaptic interaction with glutamate- and GABA-containing axonal terminals.  Synapse. 2000;  38 413-420
  • 110 Zucker M, Valevski A, Weizman A, Rehavi M. Increased platelet vesicular monoamine transporter density in adult schizophrenia patients.  Eur Neuropsychopharmacol. 2002;  12 343-347

Correspondence

E. O. VoitPhD 

Department of Biomedical Engineering

Georgia Institute of Technology and Emory

University Medical School

313 Ferst Drive, Suite 4103

Atlanta, 30332-0535 GA

USA

Telefon: +01/404/385/50 56

Fax: +01/404/894/42 43

eMail: eberhard.voit@bme.gatech.edu