Int J Sports Med 2010; 31(6): 377-381
DOI: 10.1055/s-0030-1248332
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Changes in the Salivary Biomarkers Induced by an Effort Test

V. N. de Oliveira1 , A. Bessa1 , R. P. M. S. Lamounier1 , M. G. de Santana2 , M. T. de Mello2 , F. S. Espindola1
  • 1Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Uberlândia, Brazil
  • 2Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo, Brazil
Further Information

Publication History

accepted after revision January 25, 2010

Publication Date:
18 March 2010 (online)

Abstract

Physical exercise induces biochemical changes in the body that modify analytes in blood and saliva among other body fluids. This study analyzed the effect of an incremental effort test on the salivary protein profile to determine whether any specific protein is altered in response to such stress. We also measured thresholds of salivary alpha amylase, total salivary protein and blood lactate and searched for correlations among them. Twelve male cyclists underwent a progressive test in which blood and saliva samples were collected simultaneously at each stage. The salivary total protein profile revealed that physical exercise primarily affects the polypeptide corresponding to salivary alpha-amylase, the concentration of which increased markedly during the test. We observed thresholds of salivary alpha-amylase (sAAT), total salivary protein (PAT) and blood lactate (BLT) in 58%, 83% and 100% of our sample, respectively. Pearson's correlation indicates a strong and significant association between sAAT and BLT (r= 0.84, p<0.05), sAAT and PAT (r= 0.83, p<0.05) and BLT and PAT (r= 0.90, p<0.05). The increased expression of the salivary alpha-amylase (sAA) polypeptide suggests that sAA is the main protein responsible for the increase in total protein concentration of whole saliva. Therefore, monitoring total protein concentration is an efficient tool and an alternative noninvasive biochemical method for determining exercise intensity.

References

  • 1 Asking B. Sympathetic stimulation of amylase secretion during a parasympathetic background activity in the rat parotid gland.  Acta Physiol Scand. 1985;  124 535-542
  • 2 Bautmans I, Njemini R, Vasseur S, Chabert H, Moens L, Demanet C, Mets T. Biochemical changes in response to intensive resistance exercise training in the elderly.  Gerontology. 2005;  51 253-265
  • 3 Bishop NC, Blannin AK, Armstrong E, Rickman M, Gleeson M. Carbohydrate and fluid intake affect the saliva flow rate and IgA response to cycling.  Med Sci Sports Exerc. 2000;  32 2046-2051
  • 4 Bortolini MJS, De Agostini GG, Reis IT, Lamounier RPMS, Blumberg JB, Espindola FS. Total protein of whole saliva as a biomarker of anaerobic threshold.  Res Q Exerc Sport. 2009;  80 604-610
  • 5 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 6 Calvo F, Chicharro JL, Bandres F, Lucia A, Perez M, Alvarez J, Mojares LL, Vaquero AF, Legido JC. Anaerobic threshold determination with analysis of salivary amylase.  Can J Appl Physiol. 1997;  22 553-561
  • 7 Castle D, Castle A. Intracellular transport and secretion of salivary proteins.  Crit Rev Oral Biol Med. 1998;  9 4-22
  • 8 Chatterton Jr RT, Vogelsong KM, Lu YC, Ellman AB, Hudgens GA. Salivary alpha-amylase as a measure of endogenous adrenergic activity.  Clin Physiol. 1996;  16 433-448
  • 9 Chicharro JL, Legido JC, Alvarez J, Serratosa L, Bandres F, Gamella C. Saliva electrolytes as a useful tool for anaerobic threshold determination.  Eur J Appl Physiol. 1994;  68 214-218
  • 10 Chicharro JL, Lucia A, Perez M, Vaquero AF, Urena R. Saliva composition and exercise.  Sports Med. 1998;  26 17-27
  • 11 Davison G, Allgrove J, Gleeson M. Salivary antimicrobial peptides (LL-37 and alpha-defensins HNP1-3), antimicrobial and IgA responses to prolonged exercise.  Eur J Appl Physiol. 2009;  106 277-284
  • 12 Gilman S, Thornton R, Miller D, Biersner R. Effects of exercise stress on parotid gland secretion.  Horm Metab Res. 1979;  11 454
  • 13 Gordis EB, Granger DA, Susman EJ, Trickett PK. Asymmetry between salivary cortisol and alpha-amylase reactivity to stress: relation to aggressive behavior in adolescents.  Psychoneuroendocrinology. 2006;  31 976-987
  • 14 Hanna SJ, Brelen ME, Edwards AV. Effects of reducing submandibular blood flow on secretory responses to parasympathetic stimulation in anaesthetized cats.  Exp Physiol. 1999;  84 677-687
  • 15 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 16 Hinkley DV. Inference about the intersection in two-phase regression.  Biometrika. 1969;  56 495-504
  • 17 Hu S, Xie Y, Ramachandran P, Ogorzalek Loo RR, Li Y, Loo JA, Wong DT. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry.  Proteomics. 2005;  5 1714-1728
  • 18 Impellizzeri FM, Rampinini E, Marcora SM. Physiological assessment of aerobic training in soccer.  J Sports Sci. 2005;  23 583-592
  • 19 Iwami Y, Takahashi-Abbe S, Takahashi N, Abbe K, Yamada T. Rate-limiting steps of glucose and sorbitol metabolism in Streptococcus mutans cells exposed to air.  Oral Microbiol Immunol. 2000;  15 325-328
  • 20 Laemmli UK, Favre M. Maturation of the head of bacteriophage T4.  I. DNA packaging events. J Mol Biol. 1973;  80 575-599
  • 21 Lehmann M, Schmid P, Keul J. Plasma catecholamine and blood lactate cumulation during incremental exhaustive exercise.  Int J Sports Med. 1985;  6 78-81
  • 22 Li TL, Gleeson M. The effect of single and repeated bouts of prolonged cycling and circadian variation on saliva flow rate, immunoglobulin A and alpha-amylase responses.  J Sports Sci. 2004;  22 1015-1024
  • 23 Navazesh M. Methods for collecting saliva.  Ann N Y Acad Sci. 1993;  694 72-77
  • 24 Nexo E, Hansen MR, Konradsen L. Human salivary epidermal growth factor, haptocorrin and amylase before and after prolonged exercise.  Scand J Clin Lab Invest. 1988;  48 269-273
  • 25 Nierop A, Bratsikas A, Klinkenberg A, Nater UM, Zimmermann R, Ehlert U. Prolonged salivary cortisol recovery in second-trimester pregnant women and attenuated salivary alpha-amylase responses to psychosocial stress in human pregnancy.  J Clin Endocrinol Metab. 2006;  91 1329-1335
  • 26 Rohleder N, Wolf JM, Maldonado EF, Kirschbaum C. The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate.  Psychophysiology. 2006;  43 645-652
  • 27 Scannapieco FA, Solomon L, Wadenya RO. Emergence in human dental plaque and host distribution of amylase-binding streptococci.  J Dent Res. 1994;  73 1627-1635
  • 28 Schabmueller CG, Loppow D, Piechotta G, Schutze B, Albers J, Hintsche R. Micromachined sensor for lactate monitoring in saliva.  Biosens Bioelectron. 2006;  21 1770-1776
  • 29 Schenkels LC, Veerman EC, Nieuw Amerongen AV. Biochemical composition of human saliva in relation to other mucosal fluids.  Crit Rev Oral Biol Med. 1995;  6 161-175
  • 30 Schneider DA, McLellan TM, Gass GC. Plasma catecholamine and blood lactate responses to incremental arm and leg exercise.  Med Sci Sports Exerc. 2000;  32 608-613
  • 31 Segura R, Javierre C, Ventura JL, Lizarraga MA, Campos B, Garrido E. A new approach to the assessment of anaerobic metabolism: measurement of lactate in saliva.  Br J Sports Med. 1996;  30 305-309
  • 32 Stainsby WN, Brooks GA. Control of lactic acid metabolism in contracting muscles and during exercise.  Exerc Sport Sci Rev. 1990;  18 29-63
  • 33 Steerenberg PA, van Asperen IA, van Nieuw Amerongen A, Biewenga A, Mol D, Medema GJ. Salivary levels of immunoglobulin A in triathletes.  Eur J Oral Sci. 1997;  105 305-309
  • 34 Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.  Proc Natl Acad Sci U S A. 1979;  76 4350-4354
  • 35 van Stegeren A, Rohleder N, Everaerd W, Wolf OT. Salivary alpha amylase as marker for adrenergic activity during stress: effect of betablockade.  Psychoneuroendocrinology. 2006;  31 137-141
  • 36 van Veen JF, van Vliet IM, Derijk RH, van Pelt J, Mertens B, Zitman FG. Elevated alpha-amylase but not cortisol in generalized social anxiety disorder.  Psychoneuroendocrinology. 2008;  33 1313-1321
  • 37 Walsh NP, Blannin AK, Clark AM, Cook L, Robson PJ, Gleeson M. The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase.  J Sports Sci. 1999;  17 129-134
  • 38 Walsh NP, Montague JC, Callow N, Rowlands AV. Saliva flow rate, total protein concentration and osmolality as potential markers of whole body hydration status during progressive acute dehydration in humans.  Arch Oral Biol. 2004;  49 149-154
  • 39 Yamaguchi M, Deguchi M, Miyazaki Y. The effects of exercise in forest and urban environments on sympathetic nervous activity of normal young adults.  J Int Med Res. 2006;  34 152-159
  • 40 Yamaguchi M, Kanemori T, Kanemaru M, Kanemaru M, Takai N, Mizuno Y, Yoshida H. Performance evaluation of salivary amylase activity monitor.  Biosens Bioelectron. 2004;  20 491-497

Correspondence

Dr. Foued Salmen Espindola

Universidade Federal de

Uberladia

Instituto de Genética e

Bioquimica

Av. Para 1720

38400982 Uberlândia

Brazil

Phone: +34/32182477

Fax: +34/32182203

Email: fouedespindola@gmail.com