RSS-Feed abonnieren
DOI: 10.1055/s-0030-1249214
© Georg Thieme Verlag KG Stuttgart · New York
Gibt es eine Zukunft für künstliche Blutersatzstoffe?
Artificial blood – coming soon or never reaching clinical maturity?Publikationsverlauf
eingereicht: 8.9.2009
akzeptiert: 5.11.2009
Publikationsdatum:
16. März 2010 (online)

Zusammenfassung
Künstliche Blutersatzstoffe der früheren Generationen sollten, wie die gebrauchte Abkürzung „artificial oxygen carriers” (AOC) impliziert, die Sauerstofftransportfunktion des Blutes möglichst ohne Nebenwirkungen, ohne Blutgruppeninkompatibilitäten und Übertragungsrisiko für Infektionen ersetzen. Sie nutzten entweder die konventionelle Sauerstoffbindung an Hämoglobin: HBOC- „hemoglobin based oxygen carriers” oder die physikalische Lösung des Sauerstoffs im Plasma in den sogenannten Perfluorkarbon (PFC)-Emulsionen. Heutzutage hat man eingesehen, dass der Sauerstofftransport nicht ohne weiteres von weiteren, physiologisch gekoppelten Aufgaben des Blutes losgelöst werden kann. Heutige Blutersatzstoffe sollen auch die Kapillarperfusion aufrecht erhalten, den Gefäßtonus regulieren bzw. die organspezifische Autoregulationsfähigkeit, die Gerinnung und das Immunsystem aufrechterhalten. Weil dieses Konzept aber gegenüber den früheren Bestrebungen relativ jung ist, gestaltet sich die klinische Einführung dieser neuen Generation von Blutersatzstoffen schwierig.
Nichtsdestotrotz existieren erhebliche Forschungsaktivitäten und neue Produkte. Neuere Generationen von künstlichen Sauerstoffträgern werden heute in der dritten und vierten Generation als Spielarten und Mischformen durch Imitation der Erythrozytenfunktion als Mizellen, Nanokapseln (ABC- artifical blood cells) [43] oder Gasblasen (Microbubbles), oder Zumischung von Hydroxyäthylstärke, Gelatine oder Albumin [42]und hyperbarer Oxigenierung [38]erforscht. Selbst künstliche Thrombozyten sind bereits am Menschen bis in die Phasen der klinischen Erprobung IIa vorgedrungen [12,17]
Diese Übersicht fasst die bisherigen Erkenntnisse der Erforschung der Blutersatzmittel zusammen und betont neue Erkenntnisse und Möglichkeiten, die sich aus der Erforschung der AOC ergeben. Sie schließt mit der Schlussfolgerung – ja, höchstwahrscheinlich wird es eine Zukunft für künstliche Blutersatzstoffe geben. Offen bleibt, welches der Konzepte, Ansätze und Produkte sich klinisch durchsetzen wird und vor allem wann.
Abstract
Formerly developed resuscitation fluids solely imitated the main function of the blood -oxygen transport. A research driven by the army requested an oxygen carrier that does not need cross typing and cooled storage . Artificial oxygen carriers (AOC) use either the molecular oxygen bondage to hemoglobin: HBOC- „hemoglobin based oxygen carriers” or the physical dissolution of oxygen in the blood plasma compartment by hyperbaric pressure in perfluorocarbon emulsions (PFC). Decades of preclinical and clinical research did pass but the results were disappointing- in Russia, a not well designed PFC is available locally and the only approved HBOC in South Africa is not being used much. Other products, just prior to filing for FDA approval, did not achieve convincing study results and research and production was stopped. Some trials have been stopped by the FDA for safety reasons, half of trials with the primary endpoint reduction of allogeneic transfusion requirement were unsuccessful or offset by an increased blood requirement later.
However, some ventures currently are trying to use the knowledge gained so far and are investigating third and fourth generation products of artificial blood components. These imitate the cellular structure of red cells as micells, nanocapsules, (ABC- artifical blood cells) or gas bubbles (microbubbles), admixture of volume substitutes such as starches, gelatin or albumin or use hyperbaric oxygenation [38]. Artificial platelets are in clinical phase IIa, recombinant albumin in phase III.
In this article, a short overview about the current situation on artifical blood products is given. The critical point for the break through for artificial blood products did not come yet but could be ahead-
Schlüsselwörter
künstliche Sauerstoffträger - Hämoglobine - Perfluorkarbone - Blutersatz - Transfusion - Perfusion - Hypertension
Keywords
artificial oxygen carriers - hemoglobin-based - perfluorocarbon - artificial blood - transfusion - perfusion - hypertension
Literatur
- 1 Adamson J G, Moore C. HemolinkTM,
an o-raffinose crosslinked hemoglobin-based oxygencarrier. In: Chang TM (Ed) Blood
Substitutes: Principles, Methods, Products and Clinical Trials. Basel: Karger Landes Systems; 1998: 62-81
MissingFormLabel
- 2 Carmichael F JL, Biro G P, Cheng D CH. Phase III Clinical Trial of HemolinkTM
in Conjunction with intraoperative autologous blood donation (IAD)
in cardiac surgical patients. In:
Chang TMS (Ed) Eighth International Symposium of Blood
Substitutes. New York; Dekker, M Nov 09.-11., 2000: 22
MissingFormLabel
- 3
Conover C, Linberg R, Lejeune L, Gilbert C, Shum K, Shorr R G.
Evaluation of the
oxygen delivery ability of PEG-hemoglobin in Sprague- Dawley rats
during hemodilution.
Artif Cells Blood Substit Immobil Biotechnol.
1998;
26
199-212
MissingFormLabel
- 4
Conover C D, Gilbert C W, Shum K L, Shorr R G.
The
impact of polyethylene glycol conjugation on bovine hemoglobin’s
circulatory half-life and renal effects in a rabbit top-loaded transfusion
model.
Artif Organs.
1997;
21
907-915
MissingFormLabel
- 5 Doyle M P, Armstrong A M, Brucker E A, Fattor T J, Lemon D D. Design of a second generation
recombinant hemoglobin: minimizing nitric oxide scavenging and vasoactivity
while maintaining efficacy. In:
Chang TM (Ed) Eighth International Symposium of Blood
Substitutes. New York; Dekker, M 2000
MissingFormLabel
- 6
Frietsch T, Gassmann M, Groth G. et al .
Excessive erythrocytosis does not elevate
capillary oxygen delivery in subcutaneous mouse tissue.
Microcirculation.
2007;
14
111-123
MissingFormLabel
- 7 Frietsch T, Lenz C, Waschke K F. Artificial Blood. In:
Adams AP, Cashman JN (Ed) Recent advances
in anaesthesia and analgesia. London: Churchill
Livingstone; 2000: 103-126
MissingFormLabel
- 8
Frietsch T, Lenz C, Waschke K F.
Künstliche Sauerstoffträger: Ein Update.
Anaesth Intensivmed.
2002;
3
138-146
MissingFormLabel
- 9
Gonzalez P, Hackney A C, Jones S. et al .
A phase I/II study of polymerized
bovine hemoglobin in adult patients with sickle cell disease not in
crisis at the time of study.
J Investig Med.
1997;
45
258-264
MissingFormLabel
- 10
Greenburg A G, Kim H W.
Use of an oxygen
therapeutic as an adjunct to intraoperative autologous donation
to reduce transfusion requirements in patients undergoing coronary
artery bypass graft surgery.
J Am Coll Surg.
2004;
198
373-383; discussion 384 – 375
MissingFormLabel
- 11
Harris D R, Palmer A F.
Novel strategies
for transporting cellular hemoglobin- based oxygen carriers in the
systemic circulation.
TATM.
2007;
9
237-245
MissingFormLabel
- 12 Hilarius P M, Escolar G, Gendreau M, Verhoeven A J. Mechanism
of action of infusible platelet membranes. In: Chang TM (Ed) Eighth
International Symposium of Blood Substitutes. New York; Dekker, M Nov 09.-11.: 2000: 34
MissingFormLabel
- 13
Hill S E, Gottschalk L I, Grichnik K.
Safety and preliminary efficacy of hemoglobin
raffimer for patients undergoing coronary artery bypass surgery.
J Cardiothorac Vasc Anesth.
2002;
16
695-702
MissingFormLabel
- 14 Hsia C JC. Polynitroxylated haemoglobin (PNH): A new generation red cell
substitute with vasodilatory and antioxidant properties. In: Chang TM (Ed) Eighth
International Symposium of Blood Substitutes. New York; Dekker, M 2000
MissingFormLabel
- 15
Intaglietta M.
Microcirculatory basis for the design of artificial blood.
Microcirculation.
1999;
6
247-258
MissingFormLabel
- 16
Kasper S M, Grune F, Walter M, Amr N, Erasmi H, Buzello W.
The effects of increased doses of bovine
hemoglobin on hemodynamics and oxygen transport in patients undergoing
preoperative hemodilution for elective abdominal aortic surgery.
Anesth Analg.
1998;
87
284-291
MissingFormLabel
- 17
Kim H W, Greenburg A G.
Toward 21st
century blood component replacement therapeutics: artificial oxygen
carriers, platelet substitutes, recombinant clotting factors, and
others.
Artif Cells Blood Substit Immobil Biotechnol.
2006;
34
537-550
MissingFormLabel
- 18
Komatsu H, Furuya T, Sato N. et
al .
Effect of hemoglobin vesicle, a cellular-type artificial
oxygen carrier, on middle cerebral artery occlusion- and arachidonic
acid-induced stroke models in rats.
Neurosci Lett.
2007;
421
121-125
MissingFormLabel
- 19
Lamuraglia G M, O’hara P J, Baker W H. et al .
The reduction
of the allogenic transfusion requirement in aortic surgery with
a hemoglobin-based solution.
J Vasc Surg.
2000;
31
299-308
MissingFormLabel
- 20
Leese P T, Noveck R J, Shorr J S, Woods C M, Flaim K E, Keipert P E.
Randomized safety studies of intravenous perflubron emulsion.
I. Effects on coagulation function in healthy volunteers.
Anesth
Analg.
2000;
91
804-811
MissingFormLabel
- 21
Lenz C, Rebel A, Waschke K F, Koehler R C, Frietsch T.
Blood viscosity modulates tissue perfusion – sometimes
and somewhere.
Transfus Altern Transfus Med.
2007;
9
265-272
MissingFormLabel
- 22
Mullon J, Giacoppe G, Clagett C, Mccune D, Dillard T.
Transfusions of polymerized bovine hemoglobin in a patient with
severe autoimmune hemolytic anemia.
N Engl J Med.
2000;
342
1638-1643
MissingFormLabel
- 23
Natanson C, Kern S J, Lurie P, Banks S M, Wolfe S M.
Cell-free hemoglobin-based blood substitutes
and risk of myocardial infarction and death: A Meta-analysis.
JAMA.
2008; 299: 2301-2312
MissingFormLabel
- 24
Ning J, Wong L T, Christoff B, Carmichael F J, Biro G P.
Haemodynamic response following a 10 % topload
infusion of HemolinkTM in conscious, anaesthetized and treated spontaneously
hypertensive rats.
Transfus Med.
2000;
10
13-22
MissingFormLabel
- 25
Niquille M, Touzet M, Leblanc I, Baron J F.
Reversal of
intraoperative myocardial ischemia with a hemoglobin-based oxygen
carrier.
Anesthesiology.
2000;
92
882-885
MissingFormLabel
- 26
Noveck R J, Shannon E J, Leese P T. et al .
Randomized safety studies
of intravenous perflubron emulsion. II. Effects on immune function
in healthy volunteers.
Anesth Analg.
2000;
91
812-822
MissingFormLabel
- 27
Panetta G, Arcovito A, Morea V, Bellelli A, Miele A E.
Hb(alphaalpha,betabeta): A novel fusion construct for a dimeric,
four-domain hemoglobin.
Biochim Biophys Acta.
2008;
3
1462-1470
MissingFormLabel
- 28 Pearce L B, Gawryl M S. Overview of
preclinical and clinical efficacy of biopure’s HBOCs. In: Chang TM (Ed) Blood
Substitutes: Principles, Methods, Products and Clinical Trials. Basel: Karger Landes Systems; 1998: 82-100
MissingFormLabel
- 29
Reynolds P S, Barbee R W, Ward K R.
Lactate profiles as a resuscitation assessment
tool in a rat model of battlefield hemorrhage resuscitation.
Shock.
2008;
30
48-55
MissingFormLabel
- 30 Rousselot M, Tsai A G, Intaglietta M, Zal F. Hemarina-M101 A new generation
of blood substitutes coming from sea. In: Chang TM (Ed) Twelfth
International Symposium of Blood Substitutes. Parma; Aug 25 – 18., 2009: 52-53
MissingFormLabel
- 31
Sakai H, Sou K, Tsuchida E.
Solution to the problems of acellular hemoglobins by encapsulation
and the intrinsic issues of hemoglobin vesicles as a molecular assembly.
TATM.
2007;
9
226-232
MissingFormLabel
- 32
Sakai H, Yuasa M, Onuma H, Takeoka S, Tsuchida E.
Synthesis
and physicochemical characterization of a series of hemoglobin-based oxygen
carriers: objective comparison between cellular and acellular types.
Bioconjug Chem.
2000;
11
56-64
MissingFormLabel
- 33
Saxena R, Wijnhoud A D, Carton H. et al .
Controlled safety study of a hemoglobin-based
oxygen carrier, DCLHb, in acute ischemic stroke.
Stroke.
1999;
30
993-996
MissingFormLabel
- 34
Sielenkamper A W, Eichelbronner O, Martin C M, Madorin S W, Chin-Yee I H, Sibbald W J.
Diaspirin cross-linked hemoglobin improves
mucosal perfusion in the ileum of septic rats.
Crit Care
Med.
2000;
28
782-787
MissingFormLabel
- 35
Sloan E P, Koenigsberg M, Gens D. et al .
Diaspirin cross-linked hemoglobin (DCLHb)
in the treatment of severe traumatic hemorrhagic shock: a randomized
controlled efficacy trial.
Jama.
1999;
282
1857-1864
MissingFormLabel
- 36
Spahn D R, Van Brempt R, Theilmeier G. et al .
Perflubron emulsion delays blood transfusions
in orthopedic surgery. European Perflubron Emulsion Study Group.
Anesthesiology.
1999;
91
1195-1208
MissingFormLabel
- 37
Spahn D R, Waschke R, Standl T. et al .
Use of perflurbron emulsion to decrease
allogeneic blood transfusion in high-blood-loss non cardiac surgery:
results of a European phase 3 study.
Anesthesiology.
2002;
97
338-349
MissingFormLabel
- 38
Spears J R, Wang B, Wu X. et
al .
Aqueous oxygen: a highly O2-supersaturated infusate
for regional correction of hypoxemia and production of hyperoxemia.
Circulation.
1997;
96
4385-4391
MissingFormLabel
- 39
Sprung J, Kindscher J D, Wahr J A. et al .
The use of bovine hemoglobin glutamer-250
(Hemopure) in surgical patients: results of a multicenter, randomized,
single-blinded trial.
Anesth Analg.
2002;
94
799-808
MissingFormLabel
- 40
Standl T, Horn P, Wilhelm S. et al .
Bovine haemoglobin is more potent than
autologous red blood cells in restoring muscular tissue oxygenation
after profound isovolaemic haemodilution in dogs.
Can
J Anaesth.
1996;
43
714-723
MissingFormLabel
- 41
Tsai A, Cabrales P, Acharya A S, Intaglietta M.
Resuscitation from
hemorrhagic shock: recovery of oxygen carrying capacity of perfusion? Efficacy
of new plasma expanders.
Transfusion Alternatives in Transfusion
Medicine.
2007;
9
246-253
MissingFormLabel
- 42
Tsuchida E.
Properties of and oxygen binding by albumin- tetraphenylporphyrinatoiron(II)
derivative complexes.
Bioconjug Chem.
2000;
11
56-64
MissingFormLabel
- 43 Tsuchida E. Recent progress of artificial blood project and novel product. In: Chang TM (Ed) Eighth
International Symposium of Blood Substitutes. New York ; Dekker, M Nov 09.-11., 2000: 28
MissingFormLabel
- 44
Tsuchida E, Komatsu T, Hamamatsu K. et al .
Exchange transfusion with albumin-heme
as an artificial O2-infusion into anesthetized rats: physiological
responses, O2-delivery, and reduction of the oxidized hemin sites
by red blood cells.
Bioconjug Chem.
2000;
11
46-50
MissingFormLabel
- 45 Tyssebotn I, Bergoe G, Lundgren C. Intravascular perfluorocarbon-stabilized microbubbles for treatment
of hypocemia due to an experimental intrapulmonary shunt. In: Chang TM (Ed) Eighth
International Symposium of Blood Substitutes. San Diego; 2000: 102
MissingFormLabel
- 46
Vandegriff K, Young M A, Keipert P, Winslow N.
The safety profile of Hemospan:
a new oxygewn therapeutic designed using maleimide poly(ethylene)
glycol conjugation to human hemoglobin.
TATM.
2007;
9
213-225
MissingFormLabel
- 47
Von Dobschuetz E, Hoffmann T, Messmer K.
Diaspirin cross-linked hemoglobin effectively restores pancreatic
microcirculatory failure in hemorrhagic shock.
Anesthesiology.
1999;
91
1754-1762
MissingFormLabel
- 48
Wahr J A, Trouwborst A, Spence R K. et al .
A pilot study of the effects of a perflubron
emulsion, AF 0104, on mixed venous oxygen tension in anesthetized
surgical patients.
Anesth Analg.
1996;
82
103-107
MissingFormLabel
- 49
Winslow R M, Gonzales A, Gonzales M l. et al .
Vascular resistance and the efficacy of
red cell substitutes in a rat hemorrhage model.
J Appl Physiol.
1998;
85
993-1003
MissingFormLabel
Prof. Dr. med. Thomas Frietsch
Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum
Marburg/Giessen, Standort Marburg, Philips Universität
Marburg
Telefon: 06421/58 65991
Fax: 06421/58 65495
eMail: thomas.frietsch@urz.uni-heidelberg.de