Planta Med 2010; 76(15): 1678-1682
DOI: 10.1055/s-0030-1249939
Pharmacology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Exocarpic Acid Inhibits Mycolic Acid Biosynthesis in Mycobacterium tuberculosis

Michael Koch1 , Tim S. Bugni2 , Mohammad Sondossi3 , Chris M. Ireland2 , Louis R. Barrows1
  • 1Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
  • 2Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
  • 3Department of Microbiology, Weber State University, Ogden, Utah, USA
Further Information

Publication History

received January 26, 2010 revised April 7, 2010

accepted April 16, 2010

Publication Date:
26 May 2010 (online)

Abstract

Exocarpic acid (13E-octadecene-9,11-diynoic acid) from Exocarpos latifolius R.Br. (Santalaceae) was previously shown to have specific antimycobacterial activity. Microarray data suggested inhibition of fatty acid metabolism as a potential mode of action. Experiments designed to elucidate the mechanism of action showed that exocarpic acid was effective at inhibition of mycolic acid biosynthesis and did not act by dissipating the proton gradient in treated M. tuberculosis. Amide derivatives of exocarpic acid displayed similar properties to exocarpic acid, while other polyacetylenic fatty acids varied in their effects on mycolic acid biosynthesis.

References

  • 1 Koch M, Bugni T S, Pond C D, Sondossi M, Dindi M, Piskaut P, Ireland C M, Barrows L R. Antimycobacterial activity of Exocarpos latifolius is due to exocarpic acid.  Planta Med. 2009;  75 1326-1330
  • 2 El-Jaber N A, Estevez-Braun A G, Munoz-Munoz R O, Rodrıguez-Alfonso A, Murguia J R. Acetylenic acids from the aerial parts of Nanodea muscos.  J Nat Prod. 2003;  66 722-724
  • 3 Naidoo L A C, Drewes S E, Van Staden J, Hutchings A. Exocarpic acid and other compounds from tubers and inflorescences of Sarcophyte sanguinea.  Phytochemistry. 1992;  31 3929-3931
  • 4 Naidoo L A C, Drewes S E, Drewes F E, Van Staden J, Aken M E. When is a parasite no longer a parasite? The case of Sarcophyte sanguinea and exocarpic acid.  South African J Sci. 1994;  90 359-361
  • 5 Hopkins H C. The flora of Motupore Island, Papua New Guinea. Port Moresby; University of Papua New Guinea Press 1995
  • 6 Franzblau S G, Witzig R S, McLaughlin J C, Torres P, Madico G, Hernandez A, Degnan M T, Cook M B, Quenzer V K, Ferguson R M, Gilman R H. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate alamar blue assay.  J Clin Microbiol. 1998;  36 362-366
  • 7 Foongladda S, Roengsanthia D, Arjrattanakool W, Chuchottaworn C, Chaiprasert A, Franzblau S G. Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis.  Int J Tuberc Lung Dis. 2002;  6 1118-1122
  • 8 Boshoff H I M, Myers T G, Copp B R, McNeil M R, Wilson M A, Barry 3rd C E. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action.  J Biol Chem. 2004;  279 40174-40184
  • 9 Slayden R A, Lee R E, Barry 3rd C E. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis.  Mol Microbiol. 2000;  38 514-525
  • 10 Gratraud P, Surolia N, Besra G S, Surolia A, Kremer L. Antimycobacterial activity and mechanism of action of NAS-91.  Antimicrob Agents Chemother. 2008;  52 1162-1166
  • 11 CDC Steering Committee of the HPLC Users Group .Standardized method for HPLC identification of mycobacteria. http://www.cdc.gov/ncidod/publications/hplc.pdf Accessed April 3, 2009
  • 12 Wilson M, DeRisi J, Kristensen H H, Imboden P, Rane S, Brown P O, Schoolnik G K. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization.  PNAS. 1999;  96 12833-12838
  • 13 Cluster 3.0. http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm Accessed April 3, 2009
  • 14 Resnick M, Schuldiner S, Bercovier H. Bacterial membrane potential analyzed by spectrofluorocytometry.  Curr Microbiol. 1985;  12 183-185
  • 15 Sondossi M, Rossmoore H W, Wireman J W. Factors affecting regrowth of Pseudomonas aeruginosa following biocide treatment.  Lubric Eng. 1985;  41 366-369
  • 16 Costa A, Barata A, Malfeito-Ferreira M, Loureiro V. Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine organisms.  Food Microbiol. 2008;  25 422-427
  • 17 ImageJ. Image processing and analysis in Java. http://rsbweb.nih.gov/ij/ Accessed April 3, 2009
  • 18 Lederer B, Fujimori T, Tsujino Y, Wakabayashi K, Böger P. Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects.  Pestic Biochem Physiol. 2004;  80 151-156
  • 19 Vaara M. Agents that increase the permeability of the outer membrane.  Microbiol Rev. 1992;  56 395-411
  • 20 Projan S J, Brown-Skrobot S, Schlievert P M, Vandenesch F, Novick R P. Glycerol monolaurate inhibits production of β-lactamase, toxic shock syndrome toxin-1, and other staphylococcal exoproteins by interfering with signal transduction.  J Bacteriol. 1994;  176 4204-4209
  • 21 Ruzin A, Novick R P. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphyloccus aureus.  J Bacteriol. 2000;  182 2668-2671
  • 22 Daffe M, Reyrat J-M. The mycobacterial cell envelope. Washington; ASM Press 2008

Prof. Dr. Louis R. Barrows

Department of Pharmacology and Toxicology
University of Utah

30 S. 2000 E Rm 201

Salt Lake City, UT 84112

USA

Phone: + 1 801 581 4547

Fax: + 1 801 585 5111

Email: louis.barrows@pharm.utah.edu

    >