Subscribe to RSS
DOI: 10.1055/s-0030-1249962
© Georg Thieme Verlag KG Stuttgart · New York
Plasma Levels and Distribution of Flavonoids in Rat Brain after Single and Repeated Doses of Standardized Ginkgo biloba Extract EGb 761®
Publication History
received January 21, 2010
revised April 14, 2010
accepted April 22, 2010
Publication Date:
19 May 2010 (online)
Abstract
It is undisputed that terpene lactones and flavonoid glycosides of Ginkgo biloba are responsible for most of the extracts (e.g., EGb 761®) pharmacological actions. This investigation focused on the pharmacokinetic and the ability of the flavonoid constituents to cross the blood-brain barrier in rats, after single (600 mg/kg) or repeated (8 days, 100, or 600 mg/kg) oral administration of EGb 761®, and their distribution in different areas of the brain. For this purpose, we developed an HPLC-fluorescence method for the determination of the Ginkgo flavonoid metabolites (quercetin, kaempferol, and isorhamnetin derivatives) in the brain and plasma. A single dose of 600 mg/kg EGb 761® resulted in maximum plasma concentrations of 176, 341, and 183 ng/mL for quercetin, kaempferol, and isorhamnetin/tamarixetin, respectively and in maximum brain concentrations of 291 ng/g protein for kaempferol and 161 ng/g protein for isorhamnetin/tamarixetin. In comparison, the repeated administration of the same dose for 8 days led to an approximate 4.5-fold increase in the plasma concentration for quercetin, 11.5-fold increase for kaempferol, and 10-fold increase for isorhamnetin/tamarixetin. In the brain, an approximate 2-fold increase was observed for kaempferol and isorhamnetin/tamarixetin. About 90 % of the determined flavonoids were distributed in the hippocampus, frontal cortex, striatum, and cerebellum, which together represent only 38 % of the whole brain.
Key words
brain bioavailability - Ginkgo biloba - Ginkgoaceae - EGb 761 - flavonoid glycosides - plasma - pharmacokinetic - HPLC‐fluorescence
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 van Beek T A. Chemical analysis of Ginkgo biloba leaves and extracts. Free Radic Biol Med. 2002; 967 21-55
- 2 Sticher O. Quality of Ginkgo preparations. Free Radic Biol Med. 1993; 59 2-11
- 3 Christen Y. Oxidative stress and Alzheimer disease. Free Radic Biol Med. 2000; 71 621S-629S
- 4 Markesbery W R, Lovell M A. Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Free Radic Biol Med. 2007; 64 954-956
- 5 Ramassamy C. Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer's disease is related to the apolipoprotein E genotype – cholesterol transport protein with expanding role in cell biology. Free Radic Biol Med. 1999; 27 544-553
- 6 Wei T, Ni Y, Hou J, Chen C, Zhao B, Xin W. Hydrogen peroxide-induced oxidative damage and apoptosis in cerebellar granule cells: protection by Ginkgo biloba extract. Pharmacol Res. 2000; 41 427-433
- 7 Xin W, Wei T, Chen C, Ni Y, Zhao B, Hou J. Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents. Toxicology. 2000; 148 103-110
- 8 Smith J V, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract. Free Radic Biol Med. 2004; 64 465-472
- 9 Ramassamy C, Longpré F, Christen Y. Ginkgo biloba extract (EGb 761) in Alzheimer's disease: is there any evidence?. Curr Alzheimer Res. 2007; 4 253-262
- 10 Leuner K, Hauptmann S, Abdel-Kader R, Scherping I, Keil U, Strosznajder J B, Eckert A, Müller W E. Mitochondrial dysfunction: the first domino in brain aging and Alzheimer's disease?. Free Radic Biol Med. 2007; 9 1659-1675
- 11 Vafeiadou K, Vauzour D, Spencer J P E. Neuroinflammation and its modulation by flavonoids. Free Radic Biol Med. 2007; 7 211-224
- 12 Hollman P C, vd Gaag M, Mengelers M J, van Trijp J M, de Vries J H, Katan M B. Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radic Biol Med. 1996; 21 703-707
- 13 Manach C, Morand C, Crespy V, Demigné C, Texier O, Régérat F, Rémésy C. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett. 1998; 426 331-336
- 14 Graefe E U, Wittig J, Mueller S, Riethling A K, Uehleke B, Drewelow B, Pforte H, Jacobasch G, Derendorf H, Veit M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol. 2001; 41 492-499
- 15 Boyle S P, Dobson V L, Duthie S J, Hinselwood D C, Kyle J A, Collins A R. Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur J Clin Nutr. 2000; 54 774-782
- 16 Erlund I, Kosonen T, Alfthan G, Mäenpää J, Perttunen K, Kenraali J, Parantainen J, Aro A. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol. 2000; 56 545-553
- 17 Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005; 81 243S-255S
- 18 Nieder M. Pharmakokinetik der Ginkgo-Flavonole im Plasma. Munch Med Wochenschr. 1991; 133 61-62
- 19 Wójcicki J, Gawrońska-Szklarz B, Bieganowski W, Patalan M, Smulski H K, Samochowiec L, Zakrzewski J. Comparative pharmacokinetics and bioavailability of flavonoid glycosides of Ginkgo biloba after a single oral administration of three formulations to healthy volunteers. Mater Med Pol. 1995; 27 141-146
- 20 Zhao Y, Sun Y, Li C. Simultaneous determination of ginkgo flavonoids and terpenoids in plasma: ammonium formate in LC mobile phase enhancing electrospray ionization efficiency and capacity. J Am Soc Mass Spectrom. 2008; 19 445-449
- 21 Juergenliemk G, Boje K, Huewel S, Lohmann C, Galla H, Nahrstedt A. In vitro studies indicate that miquelianin (quercetin 3-O-beta-D-glucuronopyranoside) is able to reach the CNS from the small intestine. Planta Med. 2003; 69 1013-1017
- 22 Paulke A, Schubert-Zsilavecz M, Wurglics M. Determination of St. John's wort flavonoid-metabolites in rat brain through high performance liquid chromatography coupled with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2006; 832 109-113
- 23 Moreau J P, Eck C R, McCabe J, Skinner S. [Absorption, distribution and elimination of a labelled extract of Ginkgo biloba leaves in the rat]. Presse Med. 1986; 15 1458-1461
- 24 Abrahamse S L. Absorption, distribution, and secretion of epicatechin and quercetin in the rat. Nutr Res. 2005; 25 305-317
- 25 Cermak R. The bioavailability of quercetin in pigs depends on the glycoside moiety and on dietary factors. J Nutr. 2003; 133 2802-2807
- 26 Wolffram S, Blöck M, Ader P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J Nutr. 2002; 132 630-635
- 27 Morand C, Crespy V, Manach C, Besson C, Demigné C, Rémésy C. Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol. 1998; 275 R212-R219
- 28 Day A J, Mellon F, Barron D, Sarrazin G, Morgan M R, Williamson G. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic Res. 2001; 35 941-952
- 29 Oliveira E J, Watson D G, Grant M H. Metabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma. Xenobiotica. 2002; 32 279-287
- 30 O'Leary K A, Day A J, Needs P W, Mellon F A, O'Brien N M, Williamson G. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human beta-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem Pharmacol. 2003; 65 479-491
- 31 Watson D G, Oliveira E J. Solid-phase extraction and gas chromatography-mass spectrometry determination of kaempferol and quercetin in human urine after consumption of Ginkgo biloba tablets. J Chromatogr B Biomed Sci Appl. 1999; 723 203-210
- 32 Ader P, Wessmann A, Wolffram S. Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic Biol Med. 2000; 28 1056-1067
- 33 Butterweck V, Nahrstedt A, Evans J, Hufeisen S, Rauser L, Savage J, Popadaj B, Ernsberger P, Roth B L. In vitro receptor screening of pure constituents of St. John's wort reveals novel interactions with a number of GPCRs. Psychopharmacology (Berl). 2002; 162 193-202
- 34 Kommission E. Ginkgo biloba leaf extract Ginkgo folium. Köln; Bundesanzeiger Verlagsgesellschaft 1994
- 35 Watson D G, Pitt A R. Analysis of flavonoids in tablets and urine by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 1998; 12 153-156
- 36 Bolarinwa A, Linseisen J. Validated application of a new high-performance liquid chromatographic method for the determination of selected flavonoids and phenolic acids in human plasma using electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 823 143-151
- 37 Hollman P C H. Fluorescence detection of flavonols in HPLC by postcolumn chelation with aluminum. Anal Chem. 1996; 68 3511-3515
- 38 Watanabe C M, Wolffram S, Ader P, Rimbach G, Packer L, Maguire J J, Schultz P G, Gohil K. The in vivo neuromodulatory effects of the herbal medicine Ginkgo biloba. Proc Natl Acad Sci USA. 2001; 98 6577-6580
- 39 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193 265-275
- 40 Paulke A, Nöldner M, Schubert-Zsilavecz M, Wurglics M. St. John's wort flavonoids and their metabolites show antidepressant activity and accumulate in brain after multiple oral doses. Pharmazie. 2008; 63 296-302
- 41 Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991; 82 239-259
- 42 Upton R N. Cerebral uptake of drugs in humans. Clin Exp Pharmacol Physiol. 2007; 34 695-701
Dr. Mario Wurglics
Institute of Pharmaceutical Chemistry/ZAFES
J. W. Goethe University
Max-von-Laue-Str. 9
60438 Frankfurt am Main
Germany
Phone: + 49 69 79 82 94 32
Fax: + 49 69 79 82 93 32
Email: wurglics@pharmchem.uni-frankfurt.de
- www.thieme-connect.de/ejournals/toc/plantamedica