RSS-Feed abonnieren
DOI: 10.1055/s-0030-1250047
© Georg Thieme Verlag KG Stuttgart · New York
Biotransformation of 3-Oxo-Oleanolic Acid by Absidia glauca
Publikationsverlauf
received March 30, 2010
revised April 28, 2010
accepted May 17, 2010
Publikationsdatum:
14. Juni 2010 (online)
![](https://www.thieme-connect.de/media/plantamedica/201016/lookinside/thumbnails/10.1055-s-0030-1250047-1.jpg)
Abstract
3-Oxo-oleanolic acid (1) was biotransformed in growing cultures of the fungus Absidia glauca, resulting in three novel hydroxylated metabolites, identified as 1β-hydroxy-3-oxo-olean-11-en-28,13-lactone (2), 1β,11α-dihydroxy-3-oxo-olean-12-en-28-oic acid (3), and 1β,11α,21β-trihydroxy-3-oxo-olean-12-en-28-oic acid (4).
Key words
Absidia glauca Hagem - hydroxylation - triterpenoids - β‐cyclodextrin - anticancer
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 Huang D, Ding Y, Li Y, Zhang W, Fang W, Chen X. Anti-tumor activity of a 3-oxo derivative of oleanolic acid. Cancer Lett. 2006; 233 289-296
- 2 Sultana N, Ata A. Oleanolic acid and related derivatives as medicinally important compounds. J Enzym Inhib Med Chem. 2008; 23 739-756
- 3 Lehman L R, Stewart J D. Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centers. Curr Org Chem. 2001; 5 439-470
- 4 Huszcza E, Dmochowska-Gladysz J. Transformations of testosterone and related steroids in Absidia glauca culture. J Basic Microbiol. 2003; 43 113-120
- 5 Yi K X, Yang Y L, Yang S K, Xiao Y, Wang Z Y. Application of β-cyclodextrin inclusion technique in the biotransformation of hydrocortisone. Chin J Pharm. 2006; 37 311-313
- 6 Konoike T, Takahashi K, Araki Y, Horibe I. Practical partial synthesis of myriceric acid A, an endothelin receptor antagonist, from oleanolic acid. J Org Chem. 1997; 62 960-966
- 7 Hikino H, Nabetani S, Takemoto T. Microbial transformation of oleanolic acid (1). Yakugaku Zasshi. 1969; 89 809-813
- 8 Hikino H, Nabetani S, Takemoto T. Microbial transformation of oleanolic acid (4). Yakugaku Zasshi. 1972; 92 1528-1533
- 9 Almanza G, Balderrama L. Clerodane diterpenoids and ursane triterpenoid from Salvia haenkei. Computer-assisted structural elucidation. Tetrahedron. 1997; 53 14719-14728
- 10 Nick A, Wright A D, Sticher O. Antibacterial triterpemoid acids from Dillenia papuana. J Nat Prod. 1994; 57 1245-1250
- 11 Mallavadhani U V, Narasimhan K, Sudhakar A V S, Mahapatra A, Li W, Breemen R B. Three new pentacyclic triterpenes and some flavonoids from the fruits of an Indian ayurvedic plant Dendrophthoe falcata and their estrogen receptor binding activity. Chem Pharm Bull. 2006; 54 740-744
- 12 Choudhary M I, Batool I, Khan S N, Sultana N, Shah S A, Ur-Rahman A. Microbial transformation of oleanolic acid by Fusarium lini and α-glucosidase inhibitory activity of its transformed products. Nat Prod Res. 2008; 22 489-494
- 13 Collins D O, Ruddock P L D, Grasse G C, Reynolds W F, Reese P B. Microbial transformation of cadina-4,10(15)-dien-3-one, aromadendr-1(10)-en-9-one and methyl ursolate by Mucor plumbeus ATCC4740. Phytochemistry. 2002; 59 479-488
- 14 Cáceres-Castillo D, Mena-Rejón G J, Cedillo-Rivera R, Quijano L. 21β-Hydroxy-oleanane-type triterpenes from Hippocratea excelsa. Phytochemistry. 2008; 69 1057-1064
- 15 Chiang T C, Chang H M, Mak T C W. New oleanene-type triterpenes from Abrus precatorius and X-ray crystal structure of abrusgenic acid-methanol 1: 1 solvate. Planta Med. 1983; 49 165-169
Prof. Dr. Wei-Shuo Fang
Institute of Materia Medica
Chinese Academy of Medical Sciences & Peking Union Medical College
1 Xiannongtan Street
100050 Beijing
People's Republic of China
Telefon: + 86 10 63 16 52 29
Fax: + 86 10 63 01 77 57
eMail: wfang@imm.ac.cn
- www.thieme-connect.de/ejournals/toc/plantamedica