Planta Med 2010; 76(16): 1904-1907
DOI: 10.1055/s-0030-1250047
Natural Product Chemistry
Letters
© Georg Thieme Verlag KG Stuttgart · New York

Biotransformation of 3-Oxo-Oleanolic Acid by Absidia glauca

Na Guo1 , 2 , 3 , Ying Zhao1 , 2 , 3 , Wei-Shuo Fang1 , 2 , 3
  • 1Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Beijing, P. R. China
  • 2Key Laboratory of Biosynthesis of Natural Products, Ministry of Health, Beijing, P. R. China
  • 3Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, P. R. China
Weitere Informationen

Publikationsverlauf

received March 30, 2010 revised April 28, 2010

accepted May 17, 2010

Publikationsdatum:
14. Juni 2010 (online)

Abstract

3-Oxo-oleanolic acid (1) was biotransformed in growing cultures of the fungus Absidia glauca, resulting in three novel hydroxylated metabolites, identified as 1β-hydroxy-3-oxo-olean-11-en-28,13-lactone (2), 1β,11α-dihydroxy-3-oxo-olean-12-en-28-oic acid (3), and 1β,11α,21β-trihydroxy-3-oxo-olean-12-en-28-oic acid (4).

References

  • 1 Huang D, Ding Y, Li Y, Zhang W, Fang W, Chen X. Anti-tumor activity of a 3-oxo derivative of oleanolic acid.  Cancer Lett. 2006;  233 289-296
  • 2 Sultana N, Ata A. Oleanolic acid and related derivatives as medicinally important compounds.  J Enzym Inhib Med Chem. 2008;  23 739-756
  • 3 Lehman L R, Stewart J D. Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centers.  Curr Org Chem. 2001;  5 439-470
  • 4 Huszcza E, Dmochowska-Gladysz J. Transformations of testosterone and related steroids in Absidia glauca culture.  J Basic Microbiol. 2003;  43 113-120
  • 5 Yi K X, Yang Y L, Yang S K, Xiao Y, Wang Z Y. Application of β-cyclodextrin inclusion technique in the biotransformation of hydrocortisone.  Chin J Pharm. 2006;  37 311-313
  • 6 Konoike T, Takahashi K, Araki Y, Horibe I. Practical partial synthesis of myriceric acid A, an endothelin receptor antagonist, from oleanolic acid.  J Org Chem. 1997;  62 960-966
  • 7 Hikino H, Nabetani S, Takemoto T. Microbial transformation of oleanolic acid (1).  Yakugaku Zasshi. 1969;  89 809-813
  • 8 Hikino H, Nabetani S, Takemoto T. Microbial transformation of oleanolic acid (4).  Yakugaku Zasshi. 1972;  92 1528-1533
  • 9 Almanza G, Balderrama L. Clerodane diterpenoids and ursane triterpenoid from Salvia haenkei. Computer-assisted structural elucidation.  Tetrahedron. 1997;  53 14719-14728
  • 10 Nick A, Wright A D, Sticher O. Antibacterial triterpemoid acids from Dillenia papuana.  J Nat Prod. 1994;  57 1245-1250
  • 11 Mallavadhani U V, Narasimhan K, Sudhakar A V S, Mahapatra A, Li W, Breemen R B. Three new pentacyclic triterpenes and some flavonoids from the fruits of an Indian ayurvedic plant Dendrophthoe falcata and their estrogen receptor binding activity.  Chem Pharm Bull. 2006;  54 740-744
  • 12 Choudhary M I, Batool I, Khan S N, Sultana N, Shah S A, Ur-Rahman A. Microbial transformation of oleanolic acid by Fusarium lini and α-glucosidase inhibitory activity of its transformed products.  Nat Prod Res. 2008;  22 489-494
  • 13 Collins D O, Ruddock P L D, Grasse G C, Reynolds W F, Reese P B. Microbial transformation of cadina-4,10(15)-dien-3-one, aromadendr-1(10)-en-9-one and methyl ursolate by Mucor plumbeus ATCC4740.  Phytochemistry. 2002;  59 479-488
  • 14 Cáceres-Castillo D, Mena-Rejón G J, Cedillo-Rivera R, Quijano L. 21β-Hydroxy-oleanane-type triterpenes from Hippocratea excelsa.  Phytochemistry. 2008;  69 1057-1064
  • 15 Chiang T C, Chang H M, Mak T C W. New oleanene-type triterpenes from Abrus precatorius and X-ray crystal structure of abrusgenic acid-methanol 1: 1 solvate.  Planta Med. 1983;  49 165-169

Prof. Dr. Wei-Shuo Fang

Institute of Materia Medica
Chinese Academy of Medical Sciences & Peking Union Medical College

1 Xiannongtan Street

100050 Beijing

People's Republic of China

Telefon: + 86 10 63 16 52 29

Fax: + 86 10 63 01 77 57

eMail: wfang@imm.ac.cn