Planta Med 2010; 76(11): 1037-1043
DOI: 10.1055/s-0030-1250073
Cancer Therapy
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Microtubule-Binding Natural Products for Cancer Therapy

Qing-Xi Yue
1   Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
2   College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
,
Xuan Liu
1   Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
,
De-An Guo
1   Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
2   College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
› Author Affiliations
Further Information

Publication History

received 09 February 2010
revised 21 May 2010

accepted 02 June 2010

Publication Date:
24 June 2010 (online)

Abstract

Natural products, especially microtubule-binding natural products, play important roles in the war against cancer. From the clinical use of vinblastine in 1961, paclitaxel in 1992, to ixabepilone in 2007, microtubule-binding natural products have continually contributed to the development of cancer therapy. The present review summarizes the development of representative microtubule-binding natural products including agents binding to the colchicine-binding site, the Vinca alkaloid-binding site, the taxane-binding site and other binding sites. Future directions for the development of new anticancer microtubule-binding natural products are discussed. Finding new formulations, new targets and new sources of microtubule-binding natural products may enable more members of this kind of agent to be introduced into the clinic for cancer therapy.

 
  • References

  • Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S. Natural compounds for cancer treatment and prevention. Pharmacol Res 2009; 59: 365-378
  • Kinghorn AD, Su BN, Jang DS, Chang LC, Lee D, Gu JQ, Carcache-Blanco EJ, Pawlus AD, Lee SK, Park EJ, Cuendet M, Gills JJ, Bhat K, Park HS, Mata-Greenwood E, Song LL, Jang M, Pezzuto JM. Natural inhibitors of carcinogenesis. Planta Med 2004; 70: 691-705
  • Bailly C. Ready for a comeback of natural products in oncology. Biochem Pharmacol 2009; 77: 1447-1457
  • Risinger AL, Giles FJ, Mooberry SL. Microtubule dynamics as a target in oncology. Cancer Treat Rev 2009; 35: 255-261
  • Pasquier E, Kavallaris M. Microtubules: a dynamic target in cancer therapy. IUBMB Life 2008; 60: 165-170
  • Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater 2007; 3: 413-438
  • Jordan MA, Hadfield JA, Lawrence NJ, McGown AT. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 1998; 18: 259-296
  • Jordan MA, Kamath K. How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets 2007; 7: 730-742
  • Jordan MA. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticaner Agents 2002; 2: 1-17
  • Singh P, Rathinasamy K, Mohan R, Panda D. Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life 2008; 60: 368-375
  • Altmann KH, Gertsch J. Anticancer drugs from nature – natural products as a unique source of new microtubule-stabilizing agents. Nat Prod Rep 2007; 24: 327-357
  • Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003; 8: 413-450
  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 253-265
  • Chaplin DJ, Dougherty GJ. Tumor vasculature as a target for cancer therapy. Br J Cancer 1999; 80: 57-64
  • Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer 2005; 5: 423-435
  • Schwartz EL. Antivascular actions of microtubule-binding drugs. Clin Cancer Res 2009; 15: 2594-2601
  • Pasquier E, Honore S, Braguer D. Microtubule-targeting agents in angiogenesis: where do we stand?. Drug Resist Updat 2006; 9: 74-86
  • Kanthou C, Tozer GM. Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies. Int J Exp Pathol 2009; 90: 284-294
  • Ahmed B, Van Eijk LI, Bouma-Ter Steege JC, Van Der Schaft DW, Van Esch AM, Joosten-Achjanie SR, Lambin P, Landuyt W, Griffioen AW. Vascular targeting effect of combrestastatin A-4 phosphate dominates the inherent angiogenesis inhibitory activity. Int J Cancer 2003; 105: 20-25
  • Rustin GJ, Shreeves G, Nathan PD, Gaua A, Ganesan TS, Wang D, Boxall J, Poupard L, Chaplin DJ, Stratford MR, Balkissoon J, Zweifei M. A phase Ib trial of CA4P (combretastatin A-4 phosphate), carboplatin, and paclitaxel in patients with advanced cancer. Br J Cancer 2010; 102: 1355-1360
  • McKeage MJ, Baguley BC. Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer 2010; 116: 1859-1871
  • Kavellaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010; 10: 194-204
  • Fojo AT, Menefee M. Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Ann Oncol 2007; 18: v3-v8
  • Fojo AT, Menefee M. Microtubule targeting agents: basic mechanisms of multidrug resistance (MDR). Semin Oncol 2005; 32: S3-S8
  • Gottesman MM, Pastan I, Ambudkar SV. P-glycoprotein and multidrug resistance. Curr Opin Genet Dev 1996; 6: 610-617
  • Breier A, Barancik M, Sulova Z, Uhrik B. P-glycoprotein – implications of metabolism of neoplastic cells and cancer therapy. Curr Cancer Drug Targets 2005; 5: 457-468
  • Seeger MA, van Veen HW. Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta 2009; 1794: 725-737
  • Kamath K, Wilson L, Cabral F, Jordan MA. Beta III-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 2005; 280: 12902-12907
  • Stengel C, Newman SP, Leese MP, Potter BV, Reed MJ, Purohit A. Class III beta-tubulin expression and in vitro resistance to microtubule targeting agents. Br J Cancer 2010; 102: 316-324
  • Davis PD, Dougherty GJ, Blakey DC, Galbraith SM, Tozer GM, Holder AL, Naylor MA, Nolan J, Stratford MR, Chaplin DJ, Hill SA. ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res 2002; 62: 7247-7253
  • Micheletti G, Poli M, Borsotti P, Martinelli M, Imberti B, Taraboletti G, Giavazzi R. Vascular-targeting activity of ZD6126, a novel tubulin-binding agent. Cancer Res 2003; 63: 1534-1537
  • LoRusso PM, Gadgeel SM, Wozniak A, Barge AJ, Jones HK, DelProposto ZS, DeLuca PA, Evelhoch JL, Boerner SA, Wheeler C. Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors. Invest New Drugs 2008; 26: 159-167
  • Hinnen P, Eskens FALM. Vascular disrupting agents in clinical development. Br J Cancer 2007; 96: 1159-1165
  • Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, Lam G, Bompais-Vincent H, Zhu Z, Hicklin DJ, Bohlen P, Chaplin DJ, May C, Rafii S. Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest 2005; 115: 2992-3006
  • Gupta S, Bhattacharyya B. Antimicrotubular drugs binding to Vinca domain of tubulin. Mol Cell Biochem 2003; 253: 41-47
  • Johnson IS, Armostrong JG, Gorman M, Burnett Jr JP. The Vinca alkaloids: a new class of oncolytic agents. Cancer Res 1967; 23: 1390-1427
  • Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 1991; 51: 2212-2222
  • Kruczynski A, Poli M, Dossi R, Chazottes E, Berrichon G, Ricome C, Giavazzi R, Hill BT, Taraboletti G. Anti-angiogenic, vascular-disrupting and antimetastatic activities of vinflunine, the latest Vinca alkaloid in clinical development. Eur J Cancer 2006; 42: 2821-2832
  • Holwell SE, Hill BT, Bibby MC. Anti-vascular effects of vinflunine in the Mac 15A transplantable adenocarcinoma model. Br J Cancer 2001; 84: 290-295
  • Johnson P, Geldart T, Fumoleau P, Pinel MC, Nguyen L, Judson I. Phase I study of vinflunine administered as a 10-minute infusion on days 1 and 8 every 3 weeks. Invest Drugs 2006; 24: 223-231
  • Yun-San Yip A, Yuen-Yuan Ong E, Chow LW. Vinflunine: clinical perspectives of an emerging anticancer agent. Expert Opin Investig Drugs 2008; 17: 583-591
  • Bennouna J, Delord JP, Campone M, Nguyen L. Vinflunine: a new microtubule inhibitor agent. Clin Cancer Res 2008; 14: 1625-1632
  • Kruczynski A, Hill BT. Vinflunine, the latest Vinca alkaloid in clinical development. A review of its preclinical anticancer properties. Crit Rev Oncol Hematol 2001; 40: 159-173
  • Kingston DG. Tubulin-interactive natural products as anticancer agents. J Nat Prod 2009; 72: 507-515
  • Anderson HJ, Coleman JE, Andersen RJ, Roberge M. Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother Pharmacol 1997; 39: 223-226
  • Simoni D, Lee RM, Durrant DE, Chi NW, Baruchello R, Rondanin R, Rullo C, Marchetti P. Versatile synthesis of new cytotoxic agents structurally related to hemiasterlins. Bioorg Med Chem Lett 2010; 20: 3431-3435
  • Loganzo F, Discafani CM, Annable T, Beyer C, Musto S, Hari M, Tan X, Hardy C, Hernandez R, Baxter M, Singanallore T, Khafizova G, Poruchysky MS, Fojo T, Nieman JA, Ayral-Kaloustian S, Zas A, Andersen RJ, Greenberger LM. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo . Cancer Res 2003; 63: 1838-1845
  • Niu C, Ho DM, Zask A, Ayral-Kaloustian S. Absolute configurations of tubulin inhibitors taltobulin (HTI-286) and HTI-042 characterized by X-ray diffraction analysis and NMR studies. Bioorg Med Chem Lett 2010; 20: 1535-1538
  • Blagosklonny MV, Fojo T. Molecular effects of paclitaxel: myths and reality (A critical review). Int J Cancer 1999; 83: 151-156
  • Francis PA, Kris MG, Rigas JR, Grant SC, Miller VA. Paclitaxel (Taxol) and docetaxel (Taxotere): active chemotherapeutic agents in lung cancer. Lung Cancer 1995; 12: S163-S172
  • Buey RM, Barasoain I, Jackson E, Meyer A, Giannakakou P, Paterson I, Mooberry S, Andreu JM, Diaz JF. Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem Biol 2005; 12: 1269-1279
  • Elie-Caille C, Severin F, Helenius J, Howard J, Muller DJ, Hyman AA. Straight GDP-tubulin protofilaments form in the presence of Taxol. Curr Biol 2007; 17: 1765-1770
  • Andru JM, Bordas J, Diaz JF, Garcia de Ancos J, Gil R, Medrano FJ, Nogales E, Pantos E, Towns-Andrews E. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of Taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules. J Mol Biol 1992; 226: 169-184
  • Montero A, Fossella F, Hortobagyi G, Valero V. Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol 2005; 6: 229-239
  • McGrogan BT, Gilmartin B, Carney DN, McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 2008; 1785: 96-132
  • Patil Y, Sadhukha T, Ma L, Panyam J. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 2009; 136: 21-29
  • Oza AM. Clinical development of P glycoprotein modulators in oncology. Novartis Found Symp 2002; 243: 103-115
  • Galmarini CM, Treilleux I, Cardoso F, Bernard-Marty C, Durbecq V, Gancberg D, Bissery MC, Paesmans M, Larsimont D, Piccart MJ, Di Leo A, Dumontet C. Class III beta-tubulin isotype predicts response in advanced breast cancer patients randomly treated either with single-agent doxorubicin or docetaxel. Clin Cancer Res 2008; 14: 4511-4516
  • Shalli K, Brown I, Heys SD, Schofield AC. Alterations of beta-tubulin isotypes in breast cancer cells resistant to docetaxel. FASEB J 2005; 19: 1299-1301
  • Perez EA. Novel enhanced delivery taxanes: an update. Semin Oncol 2007; 34: 1-5
  • Nyman DW, Campbell KJ, Hersh E, Long K, Richardson K, Trieu V, Desai N, Hawkins MJ, Von Hoff DD. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 2005; 23: 7785-7793
  • Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, Oshaughnessy J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 2005; 23: 7794-7803
  • Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, Castaigne JP, Beliveau R. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 2008; 324: 1064-1072
  • Gerth K, Bedorf N, Hofle G, Irschik H, Reichenbach H. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria). Production, physico-chemical and biological properties. J Antibiot (Tokyo) 1996; 49: 560-563
  • Goodin S. Novel cytotoxic agents: epothilones. AM J Health Syst Pharm 2008; 65: S10-S15
  • Villanueva C, Vuillemin AT, Demarchi M, Bazan F, Chaigneau L, Pivot X. Ixabepilone: a new active chemotherapy in the treatment of breast cancer. Womens Health 2009; 5: 115-121
  • Trivedi M, Budihardjo I, Loureiro K, Reid TR, Ma JD. Epothelione: a novel class of microtubulie-stabilizing drugs for the treatment of cancer. Future Oncol 2008; 4: 483-500
  • Fumoleau P, Coudert B, Isambert N, Ferrant E. Novel tubulin-targeting agents: anticancer activity and pharmacologic profile of epothilones and related analogues. Ann Oncol 2007; 18: v9-v15
  • Morris PG, Fornier MN. Microtubule active agents: beyond the taxane frontier. Clin Cancer Res 2008; 14: 7167-7172
  • Gollner A, Altmann KH, Gertsch J, Mulzer J. The laulimalide family: total synthesis and biological evaluation of neolaulimalide, isolaulimalide, laulimalide and a nonnatural analogue. Chemistry 2009; 15: 5979-5997
  • Clark EA, Hills PM, Davidson BS, Wender PA, Mooberry SL. Laulimalide and synthetic laulimalide analogues are synergistic with paclitaxel and 2-methoxyestradiol. Mol Pharm 2006; 3: 457-467
  • Lu H, Murtagh J, Schwartz EL. The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere). Mol Pharmacol 2006; 69: 1207-1215
  • Mooberry SL, Tien G, Hernandez AH, Plubrukarn A, Davidson BS. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999; 59: 653-660
  • Liu J, Towle MJ, Cheng H, Saxton P, Reardon C, Wu J, Murphy EA, Kuznetsov G, Johannes CW, Tremblay MR, Zhao H, Pesant M, Fang FG, Vermeulen MW, Gallagher Jr BM, Littlefield BA. In vitro and in vivo anticancer activities of synthetic (−)-laulimalide, a marine natural product microtubule stabilizing agent. Anticancer Res 2007; 27: 1509-1518
  • Johnson TA, Tenney K, Cichewicz RH, Morinaka BI, White KN, Amagata T, Subramanian B, Media J, Mooberry SL, Valeriote FA, Crews P. Sponge-derived fijianolide polyketide class: further evaluation of their structural and cytotoxicity properties. J Med Chem 2007; 50: 3795-3803
  • Mooberry SL, Randall-Hlubek DA, Leal RM, Hegde SG, Hubbard RD, Zhang L, Wender PA. Microtubule-stabilizing agents based on designed laulimalide analogues. Proc Natl Acad Sci USA 2004; 101: 8803-8808
  • West LM, Northcote PT, Battershill CN. Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000; 65: 445-449
  • Hamel E, Day BW, Miller JH, Jung MK, Northcote PT, Ghosh AK, Curran DP, Cushman M, Nicolaou KC, Paterson I, Sorensen EJ. Synergistic effects of peloruside A and laulimalide with taxoid site drugs, but not with each other, on tubulin assembly. Mol Pharmacol 2006; 70: 1555-1564
  • Gaitanos TN, Buey RM, Díaz JF, Northcote PT, Teesdale-Spittle P, Andreu JM, Miller JH. Peloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res 2004; 64: 5063-5067
  • Wilmes A, Bargh K, Kelly C, Northcote PT, Miller JH. Peloruside A synergizes with other microtubule stabilizing agents in cultured cancer cell lines. Mol Pharm 2007; 4: 269-280
  • Huzil JT, Chik JK, Slysz GW, Freedman H, Tuszynski J, Taylor RE, Sackett DL, Schriemer DC. A unique mode of microtubule stabilization induced by peloruside A. J Mol Biol 2008; 378: 1016-1030
  • Evans DA, Welch DS, Speed AW, Moniz GA, Reichelt A, Ho S. An aldol-based synthesis of (+)-peloruside A, a potent microtubule stabilizing agent. J Am Chem Soc 2009; 131: 3840-3841
  • Singh AJ, Xu CX, Xu X, West LM, Wilmes A, Chan A, Hamel E, Miller JH, Northcote PT, Ghosh AK. Peloruside B, a potent anti-tumor macrolide from the New Zealand marine sponge Mycale hentscheli: isolation, structure, total synthesis and bioactivity. J Org Chem 2010; 75: 2-10
  • Tinley TL, Randall-Hlubek DA, Leal RM, Jackson EM, Cessac JW, Quada Jr JC, Hemscheidt TK, Mooberry SL. Taccalonolides E and A: plant-derived steroids with microtubule-stabilizing activity. Cancer Res 2003; 63: 3211-3220
  • Risinger AL, Jackson EM, Polin LA, Helms GL, LeBoeuf DA, Joe PA, Hopper-Borge E, Ludueña RF, Kruh GD, Mooberry SL. The taccalonolides: microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res 2008; 68: 8881-8888
  • Buey RM, Barasoain I, Jackson E, Meyer A, Giannakakou P, Paterson I, Mooberry S, Andreu JM, Diaz JF. Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem Biol 2005; 12: 1269-1279
  • Risinger AL, Mooberry SL. Taccalonolides: novel microtubule stabilizers with clinical potential. Cancer Lett 2010; 291: 14-19
  • Jackson KL, Henderson JA, Phillips AJ. The halichondrins and E7389. Chem Rev 2009; 109: 3044-3079
  • Jimeno A. Eribulin: rediscovering tubulin as an anticancer target. Clin Cancer Res 2009; 15: 3903-3905
  • Smith JA, Wilson L, Azarenko O, Zhu L, Lewis BM, Littlefield BA, Jordan MA. Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 2010; 49: 1331-1337