Z Orthop Unfall 2010; 148(4): 393-397
DOI: 10.1055/s-0030-1250108
Hüftgelenkendoprothetik

© Georg Thieme Verlag KG Stuttgart · New York

Metallionen: Wichtige Mitspieler in der aseptischen Lockerung

Metal Ions: Important Co-Players in Aseptic LooseningD. Cadosch1 , 2 , C. L. Schlett3 , O. P. Gautschi4 , H. C. Frei1 , L. Filgueira5
  • 1Chirurgische Klinik, Kantonsspital Winterthur, Schweiz
  • 2Klinik für Unfallchirurgie, Universitätsspital Zürich, Schweiz
  • 3Cardiac CT MR PET Imaging Program, Massachusetts General Hospital, Boston, Massachusetts, USA
  • 4Klinik für Neurochirurgie, Kantonsspital St. Gallen, Schweiz
  • 5School of Anatomy and Human Biology, University of Western Australia, Crawley, Australien
Further Information

Publication History

Publication Date:
16 August 2010 (online)

Zusammenfassung

Studienziel: Ziel dieser Arbeit war es, die Auswirkungen von Metallionen auf den Knochenmetabolismus im Zusammenhang mit der aseptischen Lockerung von Metallimplantaten zu untersuchen. Methode: Die aktuellste Fachliteratur wurde hinsichtlich Biokorrosion und Auswirkung von Metallionen auf den Knochenmetabolismus untersucht. Ergebnisse: Neben den zellulären Mechanismen der sogenannten Partikelkrankheit spielen Metallionen eine zusätzliche Rolle bei der Entstehung osteolytischer periprothetischer Läsionen. Die durch Biokorrosion freigesetzten Metallionen führen zu einer proinflammatorischen Reaktion sowie zu einer Rekrutierung und Differenzierung osteolytisch wirksamer Zellen und Zellen des peripheren Immunsystems. Schlussfolgerung: Die weitere Verfolgung dieser zellulären und molekularen Mechanismen ist entscheidend für das Verständnis der aseptischen Prothesenlockerung und für die Entwicklung neuer kausaler Behandlungsansätze.

Abstract

Aim: The aims of this review were to discuss the different mechanisms of biocorrosion of orthopaedic metal implants in the human body, as well as the effects of the released metal ions on bone metabolism and the immune system in regard to their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity. Implant failure due to aseptic loosening is thought to occur in about 10–15 % of cases. Methods: A review of the literature (using PubMed with the search terms: biocorrosion, metal ions and bone metabolism) was performed. Additionally, we discuss our research results in the field of aseptic loosening. Results: Despite a great effort in developing new implants, metal devices used in orthopaedic and trauma surgery remain prone to biocorrosion by several mechanisms including the direct corrosion by osteoclasts, leading to the production of significant amounts of wear particles and metal ions. In addition to the well documented increased osteolytic activity caused by large (in the nanometer range) wear particles, increasing evidence strongly suggests that the released metal ions contribute to the pathophysiological mechanism of aseptic loosening. Metal ions stimulate both the immune system and bone metabolism through a series of direct and indirect pathways leading to an increased osteolytic activity at the bone-implant interface. Conclusion: To date, revision surgery remains the only option for the treatment of a failed orthopaedic implant caused by aseptic loosening. A better understanding of the complex pathophysiological mechanisms (including the effects caused by the released metal ions) of aseptic loosening may have a significant potential in developing novel implants and therapies in order to reduce the incidence of this complication.

Literatur

  • 1 Agarwal S. Osteolysis-basic science, incidence and diagnosis.  Curr Orthop. 2004;  18 220-231
  • 2 Aguila H L, Rowe D W. Skeletal development, bone remodeling, and hematopoiesis.  Immunol Rev. 2005;  208 7-18
  • 3 Aspenberg P, Van der Vis H. Migration, particles, and fluid pressure. A discussion of causes of prosthetic loosening.  Clin Orthop Relat Res. 1998;  352 75-80
  • 4 Cadosch D, Chan E, Gautschi O P et al. Bio-corrosion of stainless steel by osteoclasts – in vitro evidence.  J Orthop Res. 2009;  27 841-846
  • 5 Cadosch D, Chan E, Gautschi O P et al. Titanium IV ions induced human osteoclast differentiation and enhanced bone resorption in vitro.  J Biomed Mater Res A. 2009;  91 29-36
  • 6 Cadosch D, Gautschi O P, Al-Mushaiqri M S et al. In vitro evidence of titanium and aluminium bio-corrosion by human osteoclasts.  J Biomed Mater Res A. 2010;  in press
  • 7 Cadosch D, Gautschi O P, Chan E et al. Titanium induced production of chemokines CCL17/TARC and CCL22/MDC in human osteoclasts and osteoblasts.  J Biomed Mater Res A. 2010;  92 475-483
  • 8 Cyster J G. Chemokines and cell migration in secondary lymphoid organs.  Science. 1999;  286 2098-2102
  • 9 Disegi J A, Wyss H. Implant materials for fracture fixation: a clinical perspective.  Orthopedics. 1989;  12 75-79
  • 10 Fouqe-Aubert A, Chapurlat R. Influence of RANKL inhibition on immune system in the treatment of bone diseases.  Joint Bone Spine. 2008;  75 5-10
  • 11 Hallab N J, Anderson S, Stafford T et al. Lymphocyte responses in patients with total hip arthroplasty.  J Orthop Res. 2005;  23 384-391
  • 12 Harris W H. Osteolysis and particle disease in hip replacement. A review.  Acta Orthop Scand. 1994;  65 113-123
  • 13 Jacobs J J, Hallab N J, Skipor A K et al. Metal degradation products: a cause for concern in metal-metal bearings?.  Clin Orthop Relat Res. 2003;  417 139-147
  • 14 Jacobs J J, Skipor A K, Black J et al. Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy.  J Bone Joint Surg [Am]. 1991;  73 1475-1486
  • 15 Kim K J, Rubash H E, Wilson S C et al. A histologic and biochemical comparison of the interface tissues in cementless and cemented hip prostheses.  Clin Orthop Relat Res. 1993;  287 142-152
  • 16 Leopold S S, Berger R A, Patterson L et al. Serum titanium level for diagnosis of a failed, metal-backed patellar component.  J Arthroplasty. 2000;  15 938-943
  • 17 Lowe R, Nalepka J L, Van de Motter R R et al. Stimulation of osteoclast differentiation by wear debris depends on synergistic interactions between IL-1alpha, IL-1beta, IL-6, and TNF-alpha.  Trans Orthop Res Soc. 2001;  26 959
  • 18 Merkel K D, Erdmann J M, McHugh K P et al. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis.  Am J Pathol. 1999;  154 203-210
  • 19 Nakamura E S, Koizumi K, Kobayashi M et al. RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4.  Clin Exp Metastasis. 2006;  23 9-18
  • 20 Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro.  Biomaterials. 2005;  26 11-21
  • 21 Richards L, Brown C, Stone M H et al. Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved in vivo.  J Bone Joint Surg [Br]. 2008;  90 1106-1113
  • 22 Singh R, Dahotre N B. Corrosion degradation and prevention by surface modification of biometallic materials.  J Mater Sci Mater Med. 2007;  18 725-751
  • 23 Standardization Iof .Corrosion of metals and alloys – basic terms and definitions. ISO 8044: 1999. 
  • 24 Stea S, Visentin M, Granchi D et al. Cytokines and osteolysis around total hip prostheses.  Cytokine. 2000;  12 1575-1579
  • 25 Thompson G J, Puleo D A. Effects of sublethal metal ion concentrations on osteogenic cells derived from bone marrow stromal cells.  J Appl Biomater. 1995;  6 249-258
  • 26 Von Knoch M, Buchhorn G, Von Knoch F et al. Intracellular measurement of polyethylene particles. A histomorphometric study.  Arch Orthop Trauma Surg. 2001;  121 399-402
  • 27 Yan Y, Neville A, Dowson D. Understanding the role of corrosion in the degradation of metal-on-metal implants.  Proc Inst Mech Eng [H]. 2006;  220 173-181

Dr. med. Dieter Cadosch, Ph. D. c.

Chirurgische Klinik
Kantonsspital Winterthur

Brauerstrasse 15

8401 Winterthur

Schweiz

Phone: +41/5 22 66 24 30

Fax: +41/7 14 94 28 83

Email: dcadosch@gmx.net