Planta Med 2010; 76(15): 1635-1641
DOI: 10.1055/s-0030-1250120
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

1,5-Anhydro-D-Fructose and its Derivatives: Biosynthesis, Preparation and Potential Medical Applications[*]

Roland Fiskesund1 , Kazuhiro Abeyama2 , 3 , Kazuhiro Yoshinaga4 , Jun-ichi Abe5 , Yongbing Yuan6 , Shukun Yu7
  • 1Department of Medicine, Unit of Emergency Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden
  • 2Taikai Clinic, Chugo Satsuma-Sendai, Japan
  • 3Department of Functional Biology and Pharmacology, Kagoshima University, Sakuragaoka, Kagoshima, Japan
  • 4R & D Division, Nihon Denpun, Ltd. Kagoshima, Japan
  • 5Department of Bioscience and Technology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
  • 6Laboratory of Biorenew and Applied Enzymology, Qingdao Agricultural University, Qingdao, China
  • 7Enzyme R & D, Genencor Division, Danisco A/S, Aarhus, Denmark
Further Information

Publication History

received May 9, 2010 revised June 5, 2010

accepted June 14, 2010

Publication Date:
19 July 2010 (online)

Abstract

1,5-Anhydro-D-fructose (AF) was first found in fungi and red algae. It is produced by the degradation of glycogen, starch and maltosaccharides with α-1,4-glucan lyase (EC 4.2.2.13). In vivo, AF is metabolized to 1,5-anhydro-D-glucitol (AG), ascopyrone P (APP), microthecin and other derivatives via the anhydrofructose pathway. The genes coding for the enzymes in this pathway have been cloned, enabling the large-scale production of AF and related products in a cell-free reactor. The possible applications of these products in medicine have been evaluated using both in vitro and in vivo systems. Thus AF is a useful anticariogenic agent as it inhibits the growth of the oral pathogen Streptococcus mutans, impairing the production of plaque-forming polysaccharides and lactic acid. AF also shows anti-inflammatory and anticancer effects. AG is used as a diabetic marker for glycemic control. AG also stimulates insulin secretion in insulinoma cell lines. In vivo, APP has been shown to lengthen the life span of cancer-afflicted mice. It interferes with tumor growth and metastasis by its cidal effects on fast multiplying cells. Microthecin inhibits the growth of the human pathogen Pseudomonas aeruginosa PAO1, particularly under anaerobic conditions. The pharmaceutical usefulness of the other AF metabolites 1,5-anhydro-D-mannitol,1-deoxymannojirimycin, haliclonol, 5-epipentenomycin I, bissetone, palythazine, isopalythazine, and clavulazine remains to be investigated. In this review AF and its metabolites as the bioactive natural products for their pharmaceutical potentials are discussed.

1 Dedication Dedicated to Professor Inge Lundt, Department of Chemistry, Technical University of Denmark

References

  • 1 Drew D P, Krichau N, Reichwald K, Simonsen H T. Guaianolides in apiaceae: perspectives on pharmacology and biosynthesis.  Phytochem Rev. 2009;  8 581-599
  • 2 Yu S, Fiskesund R. The anhydrofructose pathway and its possible role in stress response and signaling.  Biochim Biophys Acta. 2006;  1760 1314-1322
  • 3 Yu S. The anhydrofructose pathway.  IUBMB Life. 2008;  60 798-809
  • 4 Yu S. α-1,4-Glucan lyase, a new starch processing enzyme for production of 1,5-anhydro-D-fructose.  Zuckerindustrie. 2004;  129 26-30
  • 5 Yu S, Andreassen M, Lundt I. Enzymatic production of microthecin by aldos-2-ulose dehydratase from 1,5-anhydro-D-fructose and stability studies of microthecin.  Biocatal Biotransformation. 2008;  26 169-176
  • 6 Yoshinaga K, Wakamatsu C, Saeki Y, Abe J I, Hizukuri S. Conversion of 1,5-anhydro-D-fructose into functional compound, ascopyrone P by heating.  J Appl Glycosci. 2005;  52 287-291
  • 7 Hisaku S, Takeda Y, Abe J I, Muroya T, Yoshinaga K, Fujisue M (Hizukuri). Agent for suppressing or inhibiting bacterial proliferation containing 1,5-anhydro-D-fructose. Jap Patent Appl JP11-266336. 1999
  • 8 Hisaku S, Fujisue M, Abe J I (Hizukuri). Prophylactic for tooth disease and method for producing food containing the same. Jap Patent Appl JP2004123604. 2004
  • 9 Abeyama K, Yoshimoto Y. Antitumor agent. Eur Patent Appl EP1686122. 2006
  • 10 Deffieux G, Baute R, Baute M A, Atfani M, Carpy A. 1,5-Anhydro-D-fructose, the precursor of the pyrone microthecin in Morchella vulgaris.  Phytochemistry. 1987;  26 1391-1393
  • 11 Yu S, Kenne L, Pedersén M. α-1,4-Glucan lyase, a new class of starch/glycogen degrading enzyme. I. Efficient purification and characterization from red seaweeds.  Biochim Biophys Acta. 1993;  1156 313-320
  • 12 Yu S, Christensen T M I E, Kragh K M, Bojsen K, Marcussen J. Efficient purification, characterization and partial amino acid sequencing of two α-1,4-glucan lyases from fungi.  Biochim Biophys Acta. 1997;  1339 311-320
  • 13 Baute M A, Baute R, Deffieux G. Fungal enzymatic activity degrading 1,4-α-D-glucans to 1,5-D-anhydrofructose.  Phytochemistry. 1988;  27 3401-3403
  • 14 Baute M A, Deffieux G, Vercauteren J, Baute R, Badoc A. Enzymic activity degrading 1,4-α-glucans to ascopyrones P and T in Pezizales and Tuberales.  Phytochemistry. 1993;  33 41-45
  • 15 Suzuki M, Mizuno H, Akanuma Y, Akanuma H. Synthesis of 1,5-anhydro-D-glucitol from glucose in rat hepatoma cells.  J Biochem (Tokyo). 1994;  115 87-92
  • 16 Suzuki M, Kametani S, Uchida K, Akanuma H. Production of 1,5-anhydroglucitol from 1,5-anhydrofructose in erythroleukemia cells.  Eur J Biochem. 1996;  240 23-29
  • 17 Kametani S, Shiga Y, Akanuma H. Hepatic production of 1,5-anhydrofructose and 1,5-anhydroglucitol in rat by the third glycogenolytic pathway.  Eur J Biochem. 1996;  242 832-838
  • 18 Shiga Y, Kametani S, Kadokura T, Akanuma H. 1,5-Anhydroglucitol promotes glycogenolysis in Escherichia coli.  J Biochem (Tokyo). 1999;  125 166-172
  • 19 Broberg A, Kenne L, Pedersén M. Analysis of 1,5-anhydro-D-fructose, microthecin, and 4-deoxy-glycero-hexo-2,3-diulose in algae using gas chromatography-mass spectrometry in selected ion monitoring mode.  Anal Biochem. 1999;  268 35-42
  • 20 Andersen S M, Lundt I, Marcussen J, Yu S. 1,5-Anhydro-D-fructose, a versatile chiral building block: biochemistry and chemistry.  Carbohydr Res. 2002;  337 873-890
  • 21 Yu S, Marcussen J. α-1,4-Glucan lyase, molecular features and its use for production of 1,5-anhydro-D-fructose from starch. Gilbert HJ, Davies GJ, Henrissat B, Svensson B Recent advances in carbohydrate bioengineering. London; Royal Society of Chemistry (RS.C) Press 1999: 243-250
  • 22 Dekany G, Lundt I, Niedermair F, Bichler S, Spreitz J, Sprenger F K, Stütz A E. 1,5-Anhydro-D-fructose from D-fructose.  Carbohydr Res. 2007;  342 1249-1253
  • 23 Lundt I, Yu S. 1,5-Anhydro-D-fructose: biocatalytic and chemical synthetic methods for the preparation, transformation and derivatization.  Carbohydr Res. 2010;  345 181-190
  • 24 Andersen S M, Jensen H M, Yu S. Ascopyrone P: chemical synthesis from D-glucose.  J Carbohydr Chem. 2002;  21 569-578
  • 25 Kühn A, Yu S, Giffhorn F. Catabolism of 1,5-anhydro-D-fructose in Sinorhizobium morelense S-30.7.5: discovery, characterization, and overexpression of a new 1,5-anhydro-D-fructose reductase and its application in sugar analysis and rare sugar synthesis.  Appl Environ Microbiol. 2006;  72 1248-1257
  • 26 Andersen S M, Lundt I, Marcussen J. 1,5-Anhydro-D-fructose: stereoselective conversions to 1,5-anhydroalditols and deoxy/amino substituted analogues.  J Carbohydr Chem. 2000;  19 717-725
  • 27 Maier P, Andersen S M, Lundt I. 1,5-Anhydro-D-fructose as a chiral building block: a novel approach to 1-deoxymannojirimycin.  Synthesis. 2006;  827-830
  • 28 Deffieux G, Vercauterena J, Baute M A, Neveu A, Baute R. Bacterial conversion of the fungal ascopyrone T to 2(S)-dihydroascopyrone T (haliclonol).  Phytochemistry. 1994;  36 849-852
  • 29 Baute M A, Deffieux G, Baute R, Badoc A, Vercauteren J, Léger J M, Neveu A. Fungal enzymic activity degrading 1,4-α-D-glucans to echinosporin (5-epipentenomycin I).  Phytochemistry. 1991;  30 1419-1423
  • 30 Brehm M, Göckel V H, Jarglis P, Lichtenthaler F W. Expedient conversion of D-glucose into 1,5-anhydro-D-fructose and into single stereogenic-center dihydropyranones, suitable six-carbon scaffolds for concise syntheses of the soft-coral constituents (−)-bissetone and (−)-palythazine.  Tetrahedron Asym. 2008;  19 358-373
  • 31 Cardellina J H, Hendrickson R L, Manfredi K P, Strobel S A, Clardy J. Bissetone, a unique antimicrobial pyranone from the gorgonian Briareu polyanthes.  Tetrahedron Lett. 1987;  28 727-730
  • 32 Taguchi T, Haruna M, Okuda J. Effects of 1,5-anhydro-D-fructose on selected glucose-metabolizing enzymes.  Biotechnol Appl Biochem. 1993;  18 275-283
  • 33 Ferrari R A, Mandelstam P, Crane R K. 1,5-Anhydro-D-glucitol 6-phosphate and its use for the specific inhibition of the hexokinase reaction in tissue homogenates.  Arch Biochem Biophys. 1959;  80 372-377
  • 34 Keston A S. Mutarotase inhibition by L-deoxyglucose.  Science. 1964;  143 698-700
  • 35 Carabaza A, Ciudad C J, Baqué S, Guinovart J J. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes.  FEBS Lett. 1992;  296 211-214
  • 36 Yamanouchi T, Inoue T, Ichiyanagi K, Sakai T, Ogata N. 1,5-Anhydroglucitol stimulates insulin release in insulinoma cell lines.  Biochim Biophys Acta. 2003;  1623 82-87
  • 37 Yamanouchi T, Ogata N, Yoshimura T, Inoue T, Ogata E, Kawasaki T, Kashiwabara A, Muraoka H. Transport of 1,5-anhydro-D-glucitol into insulinoma cells by a glucose-sensitive transport system.  Biochim Biophys Acta. 2000;  1474 291-298
  • 38 Abeyama K, Yoshimoto Y, Nagayama S. Adiponectin production promoting agent. Jap Patent Appl JP2008195630. 2008
  • 39 Yamanouchi T, Tachibana Y, Akanuma H, Minoda S, Shinohara T, Moromizato H, Miyashita H, Akaoka I. Origin and disposal of 1,5-anhydroglucitol, a major polyol in the human body.  Am J Physiol. 1992;  263 E268-E273
  • 40 Yabuuchi M, Masuda M, Katoh K, Nakamura T, Akanuma H. Simple enzymatic method for determining 1,5-anhydro-D-glucitol in plasma for diagnosis of diabetes mellitus.  Clin Chem. 1989;  35 2039-2043
  • 41 Yamaji K, Sarker K P, Maruyama I, Hizukuri S. Antioxidant effects of 1,5-anhydro-D-fructose, a new natural sugar, in vitro.  Planta Med. 2002;  68 16-19
  • 42 Yuan Y B, Cao R, Westh B, Yu S. Examination of 1,5-anhydro-D-fructose and the enolone ascopyrone P, metabolites of the anhydrofructose pathway of glycogen and starch degradation, for their possible application in fruits, vegetables and beverages as antibrowning agents.  J Agric Food Chem. 2005;  53 9491-9497
  • 43 Yu S, Pedersén M, Kenne L. Glucan lyase producing 1,5-anhydrofructose. US Patent Appl US5695970. 1997
  • 44 Yajima M, Furuhashi S, Muroya T, Yoshinaga K, Fujisue M. Method for preventing discoloration of noodle and noodle quality improver. Jap Patent Appl JP 2003047416. 2003
  • 45 Lee O, Bruce W R, Dong Q, Bruce J, Mehta R, O'Brien P J. Fructose and carbonyl metabolites as endogenous toxins.  Chem Biol Interact. 2009;  178 332-339
  • 46 Abeyama K, Maruyama Y, Yoshimoto Y, Yoshinaga K. Anti-inflammatory agent. Jap Patent Appl JP2006306814. 2006
  • 47 Meng X J, Kawahara K I, Nawa Y, Miura N, Shrestha B, Tancharoen S, Sameshima H, Hashiguchi T, Maruyama I. 1,5-Anhydro-D-fructose attenuates lipopolysaccharide-induced cytokine release via suppression of NF-κB p 65 phosphorylation.  Biochem Biophys Res Commun. 2009;  380 343-348
  • 48 Meng X J, Kawahara K I, Matsushita K, Nawa Y, Shrestha B, Kikuchi K, Sameshima H, Hashiguchi T, Maruyama I. Attenuation of LPS-induced iNOS expression by 1,5-anhydro-D-fructose.  Biochem Biophys Res Commun. 2009;  387 42-46
  • 49 Yu S, Mei J, Ahrén B. Basic toxicology and metabolism studies of 1,5-anhydro-D-fructose using bacteria, cultured mammalian cells and rodent models.  Food Chem Toxicol. 2004;  42 1677-1686
  • 50 Mei J, Yu S, Ahrén B. A 90-day toxicological evaluation of 1,5-anhydro-D-fructose in Sprague-Dawley rats.  Drug Chem Toxicol. 2005;  28 263-272
  • 51 Thomas L V, Ingram R E, Yu S, Delves-Broughton J. Investigation of the effectiveness of ascopyrone P as a food preservative.  Int J Food Microbiol. 2004;  93 319-323
  • 52 Fiskesund R, Thomas L V, Schobert M, Ernberg I, Lundt I, Yu S. Inhibition spectrum studies of microthecin and other anhydrofructose derivatives using selected strains of gram-positive and -negative bacteria, yeasts and moulds, and investigation of the cytotoxicity of microthecin to malignant blood cell lines.  J Appl Microbiol. 2009;  106 624-633
  • 53 Brown J M, Wilson W R. Exploiting tumour hypoxia in cancer treatment.  Nat Rev Cancer. 2004;  4 437-447
  • 54 Morgan A J, Turner M, Yu S, Weiergang I, Pedersen H C. Antimicrobial formulation comprising microthecin or derivatives thereof and their uses in prevention and therapy. Int Patent Appl WO2004083226. 2004
  • 55 Merlet D, Mellado M, Deffieux G, Baute M A, Cambar J. Cytotoxic effect of biogenetically related pyrone and cyclopentenone fungal metabolites on renal cell line (LLC-PK1).  Bull Soc Pharm Bordeaux. 1991;  130 5-16
  • 56 Bojsen K, Yu S, Kragh K M, Marcussen J. A group of α-1,4-glucan lyases and their genes from the red alga Gracilariopsis lemaneiformis: purification, cloning, and heterologous expression.  Biochim Biophys Acta. 1999;  1430 396-402
  • 57 Yoshinaga K, Fujisue M, Abe J I, Hanashiro I, Takeda Y, Muroya K, Hizukuri S. Characterization of exo-(1,4)-α glucan lyase from red alga Gracilaria chorda. Activation, inactivation and the kinetic properties of the enzyme.  Biochim Biophys Acta. 1999;  1472 447-454
  • 58 Bojsen K, Yu S, Marcussen J. A family of α-1,4-glucan lyase genes from fungi. Cloning, complete sequencing, and heterologous expression.  Plant Mol Biol. 1999;  40 445-454
  • 59 Yu S, Refdahl C, Lundt I. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I. Identification and purification of anhydrofructose dehydratase, ascopyrone tautomerase and α-1,4-glucan lyase in the fungus Anthracobia melaloma.  Biochim Biophys Acta. 2004;  1672 120-129

1 Dedication Dedicated to Professor Inge Lundt, Department of Chemistry, Technical University of Denmark

Roland Fiskesund, MD

Department of Medicine
Unit of Emergency Medicine
Karolinska Institute, Huddinge

SE-171 77 Stockholm

Sweden

Phone: +46 7 02 65 04 77

Email: roland.fiskesund@ki.se