Klin Monbl Augenheilkd 2010; 227(8): R107-R127
DOI: 10.1055/s-0030-1250269
KliMo-Refresher
Rubrikherausgeber: G. Duncker, Halle, C. Meltendorf, Halle
© Georg Thieme Verlag KG Stuttgart · New York

Erhebung und Auswertung von OCT-Befunden bei Makulaerkrankungen

H.-M. Helb1 , B. V. Stanzel1 , N. Eter1 , 2
  • 1Universitäts-Augenklinik Bonn
  • 2Universitäts-Augenklinik Münster
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. August 2010 (online)

Literatur

  • 1 Huang D, Swanson E A, Lin C P et al. Optical coherence tomography.  Science. 1991;  254 1178-1181
  • 2 Helb H M, Issa P C, Fleckenstein M et al. Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high-resolution, spectral-domain optical coherence tomography.  Acta Ophthalmologica. 2009;  [Epub ahead of print]
  • 3 Wojtkowski M, Srinivasan V, Fujimoto J G et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.  Ophthalmology. 2005;  112 1734-1746
  • 4 Leung C K, Cheung C Y, Weinreb R N et al. Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography.  Investigative Ophthalmology & Visual Science. 2008;  49 4893-4897
  • 5 Puvanathasan P, Forbes P, Ren Z et al. High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region.  Optics Letters. 2008;  33 2479-2481
  • 6 Stalmans P, Spileers W, Dralands L. The use of optical coherence tomography in macular diseases.  Bulletin de la Societe Belge d'ophtalmologie. 1999;  272 15-30
  • 7 Schaudig U. Optical coherence tomography.  Ophthalmologe. 2001;  98 26-34
  • 8 Jaffe G J, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma.  American Journal of Ophthalmology. 2004;  137 156-169
  • 9 Wolf S, Wolf-Schnurrbusch U. Spectral-domain optical coherence tomography use in macular diseases: a review.  Ophthalmologica. 2010;  224 333-340
  • 10 Wolf-Schnurrbusch U E, Ceklic L, Brinkmann C K et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments.  Investigative Ophthalmology & Visual Science. 2009;  50 3432-3437
  • 11 Hee M R, Baumal C R, Puliafito C A et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization.  Ophthalmology. 1996;  103 1260-1270
  • 12 Spraul C W, Lang G E, Lang G K. Value of optical coherence tomography in diagnosis of age-related macular degeneration. Correlation of fluorescein angiography and OCT findings.  Klin Monatsbl Augenheilkd. 1998;  212 141-148
  • 13 Khanifar A A, Koreishi A F, Izatt J A et al. Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration.  Ophthalmology. 2008;  115 1883-1890
  • 14 Yi K, Mujat M, Park B H et al. Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.  The British Journal of Ophthalmology. 2009;  93 176-181
  • 15 Cukras C, Agron E, Klein M L et al. Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: Age-Related Eye Disease Study Report No. 28.  Ophthalmology. 2010;  117 489-499
  • 16 Holz F G, Pauleikhoff D, Klein R et al. Pathogenesis of lesions in late age-related macular disease.  American Journal of Ophthalmology. 2004;  137 504-510
  • 17 Fleckenstein M, Schmitz-Valckenberg S, Adrion C et al. Tracking progression using spectral domain optical coherence tomography in geographic atrophy due to age-related macular degeneration.  Investigative Ophthalmology & Visual Science. 2010;  51 3846-3852
  • 18 Fleckenstein M, Charbel Issa P, Helb H M et al. High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration.  Investigative Ophthalmology & Visual Science. 2008;  49 4137-4144
  • 19 Ting T D, Oh M, Cox T A et al. Decreased visual acuity associated with cystoid macular edema in neovascular age-related macular degeneration.  Archives of Ophthalmology. 2002;  120 731-737
  • 20 Eter N, Spaide R F. Comparison of fluorescein angiography and optical coherence tomography for patients with choroidal neovascularization after photodynamic therapy.  Retina. 2005;  25 691-696
  • 21 Rogers A H, Martidis A, Greenberg P B et al. Optical coherence tomography findings following photodynamic therapy of choroidal neovascularization.  American Journal of Ophthalmology. 2002;  134 566-576
  • 22 Gass J D. Pathogenesis of disciform detachment of the neuroepithelium.  American Journal of Ophthalmology. 1967;  63 (Suppl.) 1-139
  • 23 Grossniklaus H E, Gass J D. Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes.  American Journal of Ophthalmology. 1998;  126 59-69
  • 24 Scheider A, Gundisch O, Kampik A. Surgical extraction of subfoveal choroidal new vessels and submacular haemorrhage in age-related macular degeneration: results of a prospective study.  Graefe's Archive for Clinical and Experimental Ophthalmology. 1999;  237 10-15
  • 25 Sayanagi K, Sharma S, Yamamoto T et al. Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab.  Ophthalmology. 2009;  116 947-955
  • 26 Menke M N, Dabov S, Sturm V. Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography.  The British Journal of Ophthalmology. 2008;  92 1492-1497
  • 27 Khurana R N, Dupas B, Bressler N M. Agreement of time-domain and spectral-domain optical coherence tomography with fluorescein leakage from choroidal neovascularization.  Ophthalmology. 2010;  117 1376-1380
  • 28 de Bruin D M, Burnes D L, Loewenstein J et al. In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm.  Investigative Ophthalmology & Visual Science. 2008;  49 4545-4552
  • 29 Meyer C H, Helb H M, Eter N. Monitoring of AMD patients on anti-vascular endothelial growth factor (VEGF) treatment. Practical notes on functional and anatomical examination parameters from drug approval studies, specialist information and case series.  Ophthalmologe. 2008;  105 125-138 140-142
  • 30 Eter N, Krohne T U, Holz F G. New pharmacologic approaches to therapy for age-related macular degeneration.  BioDrugs. 2006;  20 167-179
  • 31 Cukras C, Wang Y D, Meyerle C B et al. Optical coherence tomography-based decision making in exudative age-related macular degeneration: comparison of time- vs. spectral-domain devices.  Eye. 2010;  24 775-783
  • 32 Chang L K, Fine H F, Spaide R F et al. Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome.  American Journal of Ophthalmology. 2008;  146 121-127
  • 33 Koizumi H, Spaide R F, Fisher Y L et al. Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography.  American Journal of Ophthalmology. 2008;  145 509-517
  • 34 Wang M Y, Nguyen D, Hindoyan N et al. Vitreo-papillary adhesion in macular hole and macular pucker.  Retina. 2009;  29 644-650
  • 35 Oh J, Smiddy W E, Flynn jr. H W et al. Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery.  Investigative Ophthalmology & Visual Science. 2010;  51 1651-1658
  • 36 Chang L K, Koizumi H, Spaide R F. Disruption of the photoreceptor inner segment-outer segment junction in eyes with macular holes.  Retina. 2008;  28 969-975
  • 37 Srinivasan V J, Wojtkowski M, Witkin A J et al. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography.  Ophthalmology. 2006;  113 2054
  • 38 Scholda C, Wirtitsch M, Hermann B et al. Ultrahigh resolution optical coherence tomography of macular holes.  Retina. 2006;  26 1034-1041
  • 39 Inoue M, Watanabe Y, Arakawa A et al. Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes.  Graefe's Archive for Clinical and Experimental Ophthalmology. 2009;  247 325-330
  • 40 Ko T H, Witkin A J, Fujimoto J G et al. Ultrahigh-resolution optical coherence tomography of surgically closed macular holes.  Archives of Ophthalmology. 2006;  124 827-836
  • 41 Massin P, Girach A, Erginay A et al. Optical coherence tomography: a key to the future management of patients with diabetic macular oedema.  Acta Ophthalmologica Scandinavica. 2006;  84 466-474
  • 42 Virgili G, Menchini F, Dimastrogiovanni A F et al. Optical coherence tomography versus stereoscopic fundus photography or biomicroscopy for diagnosing diabetic macular edema: a systematic review.  Investigative Ophthalmology & Visual Science. 2007;  48 4963-4973
  • 43 Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography.  American Journal of Ophthalmology. 1999;  127 688-693
  • 44 Michaelides M, Kaines A, Hamilton R D et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2.  Ophthalmology. 2010;  117 1078-1086
  • 45 Elman M J, Aiello L P, Beck R W et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema.  Ophthalmology. 2010;  117 1064-1077
  • 46 Forooghian F, Cukras C, Meyerle C B et al. Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema.  Investigative Ophthalmology & Visual Science. 2008;  49 4290-4296
  • 47 Forooghian F, Stetson P F, Meyer S A et al. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.  Retina. 2010;  30 63-70
  • 48 Baskin D E. Optical coherence tomography in diabetic macular edema.  Current Opinion in Ophthalmology. 2010;  21 172-177
  • 49 Otani T, Yamaguchi Y, Kishi S. Correlation between visual acuity and foveal microstructural changes in diabetic macular edema.  Retina. 2010;  30 774-780
  • 50 Yeung L, Lima V C, Garcia P et al. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema.  Ophthalmology. 2009;  116 1158-1167
  • 51 Maheshwary A S, Oster S F, Yuson R M et al. The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema.  American Journal of Ophthalmology. 2010;  150 63-67
  • 52 Jaissle G B, Ziemssen F, Petermeier K et al. Bevacizumab for treatment of macular edema secondary to retinal vein occlusion.  Ophthalmologe. 2006;  103 471-475
  • 53 Ach T, Hoeh A E, Schaal K B et al. Predictive factors for changes in macular edema in intravitreal bevacizumab therapy of retinal vein occlusion.  Graefe's Archive for Clinical and Experimental Ophthalmology. 2010;  248 155-159
  • 54 Wu L, Arevalo J F, Berrocal M H et al. Comparison of two doses of intravitreal bevacizumab as primary treatment for macular edema secondary to central retinal vein occlusion: results of the Pan American Collaborative Retina Study Group at 24 months.  Retina. 2010;  30 1002-1011
  • 55 Kinge B, Stordahl P B, Forsaa V et al. Efficacy of ranibizumab in patients with macular edema secondary to central retinal vein occlusion: results from the sham-controlled ROCC Study.  American Journal of Ophthalmology. 2010;  [Epub ahead of print]
  • 56 Rouvas A, Petrou P, Ntouraki A et al. Intravitreal ranibizumab (Lucentis) for branch retinal vein occlusion-induced macular edema: nine-month results of a prospective study.  Retina. 2010;  30 893-902
  • 57 Hoeh A E, Ach T, Schaal K B et al. Long-term follow-up of OCT-guided bevacizumab treatment of macular edema due to retinal vein occlusion.  Graefe's Archive for Clinical and Experimental Ophthalmology. 2009;  247 1635-1641
  • 58 Springer C, Volcker H E, Rohrschneider K. Central serous chorioretinopathy – retinal function and morphology: microperimetry and optical coherence tomography.  Ophthalmologe. 2006;  103 791-797
  • 59 Gupta P, Gupta V, Dogra M R et al. Morphological changes in the retinal pigment epithelium on spectral-domain OCT in the unaffected eyes with idiopathic central serous chorioretinopathy.  International Ophthalmology. 2009;  30 175-181
  • 60 Charbel Issa P, Holz F G, Scholl H P. Findings in fluorescein angiography and optical coherence tomography after intravitreal bevacizumab in type 2 idiopathic macular telangiectasia.  Ophthalmology. 2007;  114 1736-1742
  • 61 Baumuller S, Issa P C, Scholl H P et al. Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2.  Ophthalmology. 2010;  [Epub ahead of print]
  • 62 Gass J D, Blodi B A. Idiopathic juxtafoveolar retinal telangiectasis. Update of classification and follow-up study.  Ophthalmology. 1993;  100 1536-1546
  • 63 Charbel Issa P, Finger R P, Holz F G et al. Eighteen-month follow-up of intravitreal bevacizumab in type 2 idiopathic macular telangiectasia.  The British Journal of Ophthalmology. 2008;  92 941-945
  • 64 Biccas Neto L, Mesquita A S. Toxic maculopathy caused by antimalarial drugs: detection using spectral domain OCT: case reports.  Arquivos Brasileiros de Oftalmologia. 2009;  72 710-714
  • 65 Lim J I, Tan O, Fawzi A A et al. A pilot study of Fourier-domain optical coherence tomography of retinal dystrophy patients.  American Journal of Ophthalmology. 2008;  146 417-426
  • 66 Schatz P, Bitner H, Sander B et al. Evaluation of macular structure and function by OCT and electrophysiology in patients with vitelliform macular dystrophy due to mutations in BEST1.  Investigative Ophthalmology & Visual Science. 2010;  Epub ahead of print
  • 67 Querques G, Regenbogen M, Soubrane G et al. High-resolution spectral domain optical coherence tomography findings in multifocal vitelliform macular dystrophy.  Survey of Ophthalmology. 2009;  54 311-316
  • 68 Fung A E, Lalwani G A, Rosenfeld P J et al. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration.  American Journal of Ophthalmology. 2007;  143 566-583

Prof. Dr. med. Nicole Eter

Universitäts-Augenklinik Münster

Domagkstr. 5

48149 Münster

Telefon: 0251-8356004

Fax: 0251-8356003

eMail: eter@uni-muenster.de