Subscribe to RSS
DOI: 10.1055/s-0030-1250291
© Georg Thieme Verlag KG Stuttgart · New York
Glucosinolates Profile of “Mugnolo”, a Variety of Brassica oleracea L. Native to Southern Italy (Salento)
Publication History
received April 20, 2010
revised July 23, 2010
accepted August 5, 2010
Publication Date:
07 September 2010 (online)
Abstract
Glucosinolates (GLSs) from a variety of Brassica oleracea, known locally as “mugnolo” and widely distributed in southern Italy, were studied. It was found that “mugnolo” inflorescences are characterized by the presence of the aliphatic GLSs glucoraphanin (1.79 µmol/g), glucoiberin, glucoerucin, and sinigrin, of the aromatic GLSs glucobarberin (0.56 µmol/g) and gluconasturtin, and of the indole GLSs glucobrassicin (3.51 µmol/g), neoglucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Indole GLSs were predominant, while aliphatic and aromatic GLS were found in lower quantities. The metabolic profile of “mugnolo” leaves was also studied. It was found that 4-hydroxyglucobrassicin (0.13 µmol/g) and glucoraphanin (0.11 µmol/g) are the predominant GLSs. Vegetables of the Brassicaceae family are seldom consumed raw; therefore we also analyzed the GLS profile of “mugnolo” after cooking in water. The results showed variations in the GLSs content with a fall in concentration of 50 %.
Key words
Brassica oleracea - Brassicaceae - glucosinolates - mugnolo - metabolic profile
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 Fenwick G R, Heaney R K, Mullin W J. Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Sci Nutr. 1992; 18 123-201
- 2 Moreno D A, Carvajal M, Lopez-Berenguer C, Garcìa-Viguera C. Chemical and biological characterization of nutraceutical compounds of broccoli. J Pharm Biomed. 2006; 41 1508-1522
- 3 Higdon J V, Delage B, Williams D E, Dashwood R H. Cruciferous vegetable and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res. 2007; 55 224-236
- 4 Fahey J W, Zalcmann A T, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001; 56 5-51
- 5 Bones A T, Rossiter J T. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry. 2006; 67 1053-1067
- 6 Halkier B, Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol. 2006; 57 303-333
- 7 Cartea M E, Velasco P. Glucosinolates in Brassica food: bioavailability in food and significance for human health. Phytochem Rev. 2008; 7 213-229
- 8 Mathusheski N V, Swarup R, Juvik J A, Mithen R, Bennet M, Jeffery E H. Epithiospecifier protein from broccoli (Brassica aleracea L. ssp. italica) inhibits formation of anticancer agent sulforaphane. J Agric Food Chem. 2006; 54 2069-2076
- 9 Jeffery E H, Araya M. Physiological effects of broccoli consumption. Phytochem Rev. 2009; 8 283-298
- 10 Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H, Gerhauser C. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res. 2006; 599 76-87
- 11 Zhang Y, Talalay P, Cho C G, Posner G H. A major inducer of anti carcinogenic protective enzyme from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA. 1992; 89 2399-2403
- 12 Nastruzzi C, Cortesi R, Esposito E, Menegatti E, Leoni O, Palmieri S. In vitro cytotoxic activity of some glucosinolates-derived products generated by myrosinase hydrolysis. J Agric Food Chem. 1996; 44 1014-1021
- 13 Farnham M W, Stephenson K K, Fahey J W. Capacity of broccoli to induce a mammalian chemoprotective enzyme varies among inbreed lines. J Am Soc Hort Sci. 2000; 125 482-488
- 14 Farnham M W, Wilson P E, Stephenson K K, Fahey J W. Genetic and environmental effects on glucosinolates content and chemoprotective potency of broccoli. Plant Breed. 2004; 123 60-65
- 15 Branca F, Li G, Goyal S, Quiros C F. Survey of aliphatic glucosinolates in Sicilian wild and cultivated Brassicaceae. Phytochemistry. 2002; 59 717-724
- 16 Kushad M M, Brown A F, Kurilich A C, Juvik J A, Klein B P, Wallig M A, Jeffery E H. Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem. 1999; 47 1541-1548
- 17 Bellostas N, Kachlicki P, Sørensen J C, Sørensen H. Glucosinolates profiling of seeds and sprouts of B. oleracea varieties used for food. Sci Hortic. 2007; 114 234-342
- 18 Giamoustaris A, Mithen R. Genetics of aliphatic glucosinolates. Side-chain modification in Brassica oleracea. Theor Appl Genet. 1996; 93 1006-1010
- 19 Laghetti G, Martignano F, Falco V, Cifarelli S, Gladis T, Hammer K. “Mugnoli”: A neglected race of Brassica oleracea L. from Salento (Italy). Genet Res Crop Evol. 2005; 52 635-639
- 20 Rungapamestry V, Duncan A J, Fuller Z, Ratcliffe B. Changes in glucosinolates concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. J Agric Food Chem. 2006; 54 7628-7634
- 21 Ciska E, Kozlowska H. The effect of cooking on the glucosinolates content in white cabbage. Eur Food Res Technol. 2001; 212 582-587
- 22 Rodrigues A S, Rosa E A S. Effect of post-harvest treatments on level of glucosinolates in broccoli. J Sci Food Agric. 1999; 79 1028-1032
- 23 Gliszczynska-Swiglo A, Ciska E, Pawlak-Lemanska K, Chmielewski J, Borkowski T, Tyrakowska B. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit Contam. 2006; 23 1088-1098
- 24 ISO Method, 1992. Rapeseed-determination of glucosinolates content. Part 1. Method using high performance liquid chromatography. Reference Number ISO 9167-1, 1992 (E).
- 25 Brown P D, Tokuhisa J G, Reichelt M, Gershenzon J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry. 2003; 62 471-481
- 26 Vallejo F, Tomàs-Barberàn F A, Garcìa-Viguera C. Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur Food Res Technol. 2002; 215 310-316
- 27 Dekker M, Verkerk R, Jongen M F. Predictive modeling of health aspects in the food production chain: a case study on glucosinolates in cabbage. Trends Food Sci Technol. 2000; 11 174-181
- 28 Accogli R, Marchiori S. Verifica agronomica di Brassica oleracea L. var. botrytis L. In Progetto Co.Al.Ta. 2006; 1 97-101
- 29 Volden J, Bengtsson G B, Wicklund T. Glucosinolates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem. 2009; 112 967-976
- 30 Hodges D M, Munro K D, Forney C F, McRae K B. Glucosinolates and free sugar content in cauliflower (Brassica oleracea var. botrytis cv. Freemont) during controlled-atmosphere storage. Postharv Biol Technol. 2006; 40 123-132
- 31 Tian Q, Rosselot R A, Schwartz S J. Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, Brussels sprouts, and cauliflower by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem. 2005; 343 93-99
- 32 Jia C-G, Xu C-J, Wei J, Yuan J, Yuan G-F, Wang B-L, Wang Q-M. Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chem. 2009; 114 28-37
- 33 Van Eylen D, Bellostas N, Strobel B W, Oey I, Hendrickx M, Van Loey A, Sørensen H, Sørensen J C. Influence of pressure/temperature treatments on glucosinolate conversion in broccoli (Brassica oleracea L. ssp. italica) heads. Food Chem. 2009; 112 646-653
- 34 Borowski J, Szajdek A, Borowska E J, Ciska E, Zielinski H. Content of selected bioactive components and antioxidant properties of broccoli (Brassica oleracea L.). Eur Food Res Technol. 2008; 226 459-465
- 35 Vallejo F, Tomàs-Barberàn F A, Gonzalez Benavente-Garcìa A, Garcìa-Viguera C. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. J Sci Food Agric. 2003; 83 307-313
- 36 Verkerk R, Dekker M, Jongen W M F. Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J Sci Food Agric. 2001; 81 953-958
Dr. Maria Pia Argentieri
Dipartimento Farmaco-Chimico
Facoltà di Farmacia
Università degli Studi di Bari
Via E. Orabona 4
70125 Bari
Italy
Phone: +39 08 05 44 27 57
Fax: +39 08 05 44 22 30
Email: argentieri@farmchim.uniba.it
- www.thieme-connect.de/ejournals/toc/plantamedica