Planta Med 2011; 77(4): 346-353
DOI: 10.1055/s-0030-1250382
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Constituents from Cistus salvifolius (Cistaceae) Activate Peroxisome Proliferator-Activated Receptor-γ but Not -δ and Stimulate Glucose Uptake by Adipocytes

Claudia Kühn1 [*] , Niki Eliza Arapogianni2 [*] , Maria Halabalaki2 , Jana Hempel1 , Nicole Hunger1 , Jannette Wober1 , Alexios Leandros Skaltsounis2 , Günter Vollmer1
  • 1Molecular Cell Physiology & Endocrinology, Technische Universität Dresden, Dresden, Germany
  • 2Laboratory of Pharmacognosy & Natural Products Chemistry, School of Pharmacy, Athens, Greece
Further Information

Publication History

received June 4, 2010 revised August 24, 2010

accepted August 27, 2010

Publication Date:
04 October 2010 (online)

Abstract

A number of medicinal/culinary herbs have been reported to improve glucose metabolism and to yield hypoglycemic effects in patients with diabetes. Since stimulation of insulin sensitivity appears to be a potential mechanism, peroxisome proliferator-activated receptor (PPAR) γ is a likely target molecule for small lipophilic compounds derived from endogenous metabolism and nutrition. Functionally, PPARγ integrates the control of energy, lipid, and glucose homeostasis. In addition, PPARδ activity is involved in energy expenditure. Therefore the aim of this study was to investigate whether PPARγ and PPARδ as well as the stimulation of glucose uptake is activated by botanical products. Cistus salvifolius (Cistaceae) has been identified as a candidate botanical in a preliminary screening of extracts from medicinal plants of Greek flora. In a bioguided approach, crude extracts, fractions and in the end purified compounds have been evaluated for PPARγ and PPARδ specific activities using cell-based transactivation assays. Glucose uptake was measured by nonradioactive 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) uptake. Concerning PPARγ several extracts induced reporter gene activity, and clear dose-response patterns (0.1–100 µg/mL) could be established in the case of the cyclohexane and dichloromethane extracts. Isolation of individual compounds from the cyclohexane extract revealed that at least 6 out of 7 compounds isolated were active with trans-cinnamic acid showing a clear dose-response pattern. In contrast, they were found to be inactive on PPARδ. The same compounds, however, were also active in stimulating glucose uptake into 3T3-L1 adipocytes. In summary, the bioguided fractionation of Cistus salvifolius yields PPARγ stimulating metabolites with differing chemical natures. In conclusion, PPARγ represents a candidate molecule for the mediation of improvement of glucose metabolism by botanical/nutritional products.

References

  • 1 Mlinar B, Marc J, Janez A, Pfeifer M. Molecular mechanisms of insulin resistance and associated diseases.  Clin Chim Acta. 2007;  375 20-35
  • 2 Kawamoto R, Tomita H, Oka Y, Kodama A. Metabolic syndrome as a predictor of ischemic stroke in elderly persons.  Intern Med. 2005;  44 922-927
  • 3 Quinn C E, Hamilton P K, Lockhart C J, McVeigh G E. Thiazolidinediones: effects on insulin resistance and the cardiovascular system.  Br J Pharmacol. 2008;  153 636-645
  • 4 Gastaldelli A, Miyazaki Y, Mahankali A, Berria R, Pettiti M, Buzzigoli E, Ferrannini E, DeFronzo R A. The effect of pioglitazone on the liver: role of adiponectin.  Diabetes Care. 2006;  29 2275-2281
  • 5 Hermansen K, Mortensen L S. Bodyweight changes associated with antihyperglycaemic agents in type 2 diabetes mellitus.  Drug Saf. 2007;  30 1127-1142
  • 6 Spiegelman B M. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor.  Diabetes. 1998;  47 507-514
  • 7 Kuroda M, Mimaki Y, Sashida Y, Mae T, Kishida H, Nishiyama T, Tsukagawa M, Konishi E, Takahashi K, Kawada T, Nakagawa K, Kitahara M. Phenolics with PPAR-gamma ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice.  Bioorg Med Chem Lett. 2003;  13 4267-4272
  • 8 Knouff C, Auwerx J. Peroxisome proliferator-activated receptor-gamma calls for activation in moderation: lessons from genetics and pharmacology.  Endocr Rev. 2004;  25 899-918
  • 9 Kliewer S A, Xu H E, Lambert M H, Willson T M. Peroxisome proliferator-activated receptors: from genes to physiology.  Recent Prog Horm Res. 2001;  56 239-263
  • 10 Park S H, Ko S K, Chung S H. Euonymus alatus prevents the hyperglycemia and hyperlipidemia induced by high-fat diet in ICR mice.  J Ethnopharmacol. 2005;  102 326-335
  • 11 Rau O, Wurglics M, Dingermann T, Abdel-Tawab M, Schubert-Zsilavecz M. Screening of herbal extracts for activation of the human peroxisome proliferator-activated receptor.  Pharmazie. 2006;  61 952-956
  • 12 Rau O, Wurglics M, Paulke A, Zitzkowski J, Meindl N, Bock A, Dingermann T, Abdel-Tawab M, Schubert-Zsilavecz M. Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma.  Planta Med. 2006;  72 881-887
  • 13 Chiarelli F, Di Marzio D. Peroxisome proliferator-activated receptor-gamma agonists and diabetes: current evidence and future perspectives.  Vasc Health Risk Manag. 2008;  4 297-304
  • 14 Yeh G Y, Eisenberg D M, Kaptchuk T J, Phillips R S. Systematic review of herbs and dietary supplements for glycemic control in diabetes.  Diabetes Care. 2003;  26 1277-1294
  • 15 Huang T H, Peng G, Kota B P, Li G Q, Yamahara J, Roufogalis B D, Li Y. Anti-diabetic action of Punica granatum flower extract: activation of PPAR-gamma and identification of an active component.  Toxicol Appl Pharmacol. 2005;  207 160-169
  • 16 Huang T H, Peng G, Kota B P, Li G Q, Yamahara J, Roufogalis B D, Li Y. Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: role of lowering circulating lipids.  Br J Pharmacol. 2005;  145 767-774
  • 17 Huang T H, Peng G, Li G Q, Yamahara J, Roufogalis B D, Li Y. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha.  Toxicol Appl Pharmacol. 2006;  210 225-235
  • 18 Esposito K, Maiorino M I, Ciotola M, Di Palo C, Scognamiglio P, Gicchino M, Petrizzo M, Saccomanno F, Beneduce F, Ceriello A, Giugliano D. Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial.  Ann Intern Med. 2009;  151 306-314
  • 19 Moschandreas J, Kafatos A, Aravanis C, Dontas A, Menotti A, Kromhout D. Long-term predictors of survival for the Seven Countries Study cohort from Crete: from 1960 to 2000.  Int J Cardiol. 2005;  100 85-91
  • 20 Siman C M, Eriksson U J. Vitamin C supplementation of the maternal diet reduces the rate of malformation in the offspring of diabetic rats.  Diabetologia. 1997;  40 1416-1424
  • 21 Pari L, Umamaheswari J. Antihyperglycaemic activity of Musa sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats.  Phytother Res. 2000;  14 136-138
  • 22 Proksch P, Gülz P G. Methylated flavonoids from Cistus ladanifer and Cistus palhinhae and their taxonomic implications.  Phytochemistry. 1984;  23 470-471
  • 23 Wollenweber E, Dietz H V. Occurence and distribution of free flavonoid aglycones in plants.  Phytochemistry. 1981;  20 869-932
  • 24 Huang C, Zhang Y, Gong Z, Sheng X, Li Z, Zhang W, Qin Y. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway.  Biochem Biophys Res Commun. 2006;  348 571-578
  • 25 Wober J, Moller F, Richter T, Unger C, Weigt C, Jandausch A, Zierau O, Rettenberger R, Kaszkin-Bettag M, Vollmer G. Activation of estrogen receptor-beta by a special extract of Rheum rhaponticum (ERr 731), its aglycones and structurally related compounds.  J Steroid Biochem Mol Biol. 2007;  107 191-201
  • 26 Liang Y C, Tsai S H, Tsai D C, Lin-Shiau S Y, Lin J K. Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-gamma by flavonoids in mouse macrophages.  FEBS Lett. 2001;  496 12-18
  • 27 Xu H E, Lambert M H, Montana V G, Plunket K D, Moore L B, Collins J L, Oplinger J A, Kliewer S A, Gampe Jr R T, McKee D D, Moore J T, Willson T M. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors.  Proc Natl Acad Sci USA. 2001;  98 13919-13924
  • 28 Leira F, Louzao M C, Vieites J M, Botana L M, Vieytes M R. Fluorescent microplate cell assay to measure uptake and metabolism of glucose in normal human lung fibroblasts.  Toxicol In Vitro. 2002;  16 267-273
  • 29 Alonso-Castro A J, Salazar-Olivo L A. The anti-diabetic properties of Guazuma ulmifolia Lam are mediated by the stimulation of glucose uptake in normal and diabetic adipocytes without inducing adipogenesis.  J Ethnopharmacol. 2008;  118 252-256
  • 30 Tafuri S R. Troglitazone enhances differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes.  Endocrinology. 1996;  137 4706-4712
  • 31 Armoni M, Kritz N, Harel C, Bar-Yoseph F, Chen H, Quon M J, Karnieli E. Peroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect.  J Biol Chem. 2003;  278 30614-30623
  • 32 Yonemitsu S, Nishimura H, Shintani M, Inoue R, Yamamoto Y, Masuzaki H, Ogawa Y, Hosoda K, Inoue G, Hayashi T, Nakao K. Troglitazone induces GLUT4 translocation in L6 myotubes.  Diabetes. 2001;  50 1093-1101
  • 33 Adisakwattana S, Moonsan P, Yibchok-Anun S. Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo.  J Agric Food Chem. 2008;  56 7838-7844
  • 34 Subash Babu P, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde – a potential antidiabetic agent.  Phytomedicine. 2007;  14 15-22
  • 35 Cho M C, Lee K, Paik S G, Yoon D Y. Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders.  PPAR Res. 2008;  2008 679137

1 Both authors contributed equally.

Dr. Jannette Wober

Institute of Zoology
Molecular Cell Physiology & Endocrinology
Technische Universität Dresden

Zellescher Weg 20B

01217 Dresden

Germany

Phone: +49 3 51 46 33 78 40

Fax: +49 3 51 46 33 19 23

Email: Jannette.Wober@tu-dresden.de