Thorac Cardiovasc Surg 2011; 59(2): 85-92
DOI: 10.1055/s-0030-1250388
Original Cardiovascular

© Georg Thieme Verlag KG Stuttgart · New York

Noninvasive Magnetic Resonance Imaging of Vessels Affected by Transplant Arteriosclerosis in an Experimental Mouse Aortic Allograft Model

J. Gebhardt1 , L. Budinsky2 , U. Reulbach3 , M. Weyand1 , A. Hess2 [*] , S. M. Ensminger1 [*]
  • 1Department of Cardiac Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
  • 2Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany
  • 3Department of Epidemiology and Public Health, University College of Cork, Cork, Ireland
Further Information

Publication History

received June 1, 2010

Publication Date:
07 March 2011 (online)

Abstract

Background: Transplant arteriosclerosis is still the leading cause of late mortality after heart transplantation despite advances in immunosuppression regimes. Experimental mouse models have substantially contributed to a better understanding of the multifactorial pathogenesis, but the major limitation of these studies is the difficulty in monitoring progression of transplant arteriosclerosis over time. Therefore, the aim of this study was to investigate whether MR measurements are sensitive enough to detect characteristic vascular lesions in a small animal transplantation model. Methods: For this purpose we investigated 22 iso- and allogeneic aortic graft transplanted mice in vivo with a 4.7 T MR scanner using a 2D‐RARE technique, 3D time-of-flight angiography and 3D phase contrast angiography as well as a special snake-based reconstruction algorithm. The MR lumen values of patency from native images and from 3D vessel reconstructions of the respective methods were correlated with conventional histological analysis. Results: A comparison of the different techniques showed that angiographic MR modalities correlated well with histological measurements. 2D‐RARE sequences were inferior to the sequences obtained by other ones. Superior correlations and the most accurate results were found for vessel reconstruction based on 3D angiographic time-of-flight data. Conclusion: These data demonstrate that mouse in vivo MR imaging is sensitive enough to detect and quantify vascular changes caused by transplant arteriosclerosis.

References

  • 1 Taylor D O, Edwards L B, Aurora P et al. Registry of the International Society for Heart and Lung Transplantation: Twenty-Fifth Official Adult Heart Transplant Report – 2008.  J Heart Lung Transplant. 2008;  27 943-956
  • 2 Shi C, Russell M E, Bianchi C et al. Murine model of accelerated transplant arteriosclerosis.  Circ Res. 1994;  75 199-207
  • 3 Dietrich H, Hu Y, Zou Y et al. Mouse model of transplant arteriosclerosis: role of intercellular adhesion molecule-1.  Arterioscler Thromb Vasc Biol. 2000;  20 343-352
  • 4 Koulack J, McAlister V C, Giacomantonio C A et al. Development of a mouse aortic transplant model of chronic rejection.  Microsurgery. 1995;  16 110-113
  • 5 Ensminger S M, Billing J S, Morris P J et al. Development of a combined cardiac and aortic transplant model to investigate the development of transplant arteriosclerosis in the mouse.  J Heart Lung Transplant. 2000;  19 1039-1046
  • 6 Ensminger S M, Lieder A, Bushell A et al. Comparison of the effects of exposure to a single or multiple donor alloantigens in the development of transplant arteriosclerosis.  Transplant Proc. 2001;  33 320
  • 7 Ross R. Genetically modified mice as models of transplant atherosclerosis.  Nat Med. 1996;  2 527-528
  • 8 Armstrong A T, Strauch A R, Starling R C et al. Morphometric analysis of neointimal formation in murine cardiac allografts.  Transplantation. 1997;  63 941-947
  • 9 Ensminger S M, Spriewald B M, Witzke O et al. Kinetics of transplant arteriosclerosis in MHC-class I mismatched and fully allogeneic mouse aortic allografts.  Transplantation. 2002;  73 1068-1074
  • 10 Choudhury R P, Fuster V, Badimon J J et al. MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging.  Arterioscler Thromb Vasc Biol. 2002;  22 1065-1074
  • 11 Manka D R, Gilson W, Sarembock I et al. Noninvasive in vivo magnetic resonance imaging of injury-induced neointima formation in the carotid artery of the apolipoprotein-E null mouse.  J Magn Reson Imaging. 2000;  12 790-794
  • 12 Fayad Z A, Fallon J T, Shinnar M et al. Noninvasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice.  Circulation. 1998;  98 1541-1547
  • 13 Choudhury R P, Aguinaldo J G, Rong J X et al. Atherosclerotic lesions in genetically modified mice quantified in vivo by non-invasive high-resolution magnetic resonance microscopy.  Atherosclerosis. 2002;  162 315-321
  • 14 Kober F, Canault M, Peiretti F et al. MRI follow-up of TNF-dependent differential progression of atherosclerotic wall-thickening in mouse aortic arch from early to advanced stages.  Atherosclerosis. 2007;  195 e93-e99
  • 15 Weis M, von Scheidt W. Coronary artery disease in the transplanted heart.  Annu Rev Med. 2000;  51 81-100
  • 16 Lietz K, Miller L W. Current understanding and management of allograft vasculopathy.  Semin Thorac Cardiovasc Surg. 2004;  16 386-394
  • 17 Russell W M. The development of the three Rs concept.  Altern Lab Anim. 1995;  23 298-304
  • 18 Huo Y, Guo X, Kassab G S. The flow field along the entire length of mouse aorta and primary branches.  Ann Biomed Eng. 2008;  36 685-699
  • 19 Jacoby C, Boring Y C, Beck A et al. Dynamic changes in murine vessel geometry assessed by high-resolution magnetic resonance angiography: a 9.4 T study.  J Magn Reson Imaging. 2008;  28 637-645
  • 20 Gaudnek M A, Hess A, Obermayer K et al. Measuring the reliability of geometries in magnet resonance angiography: a reference for multimodal image registration?. In: Tolxdorff T, Braun J, Deserno T M, et al., eds. Bildverarbeitung für die Medizin 2008: Algorithmen Systeme Anwendungen.. Berlin: Springer; 2008: 368-372
  • 21 Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 22 Altman D G, Bland J M. Measurement in medicine: the analysis of method comparison studies.  The Statistician. 1983;  32 307-317
  • 23 Tsutsui H, Ziada K M, Schoenhagen P et al. Lumen loss in transplant coronary artery disease is a biphasic process involving early intimal thickening and late constrictive remodeling: results from a 5-year serial intravascular ultrasound study.  Circulation. 2001;  104 653-657
  • 24 Libby P, Swanson S J, Tanaka H et al. Immunopathology of coronary arteriosclerosis in transplanted hearts.  J Heart Lung Transplant. 1992;  11 S5-S6
  • 25 Cook N S, Zerwes H G, Pally C et al. Decreased lumen size after balloon injury despite inhibition of neointimal thickening and antivasospastic treatment.  Cardiovasc Res. 1994;  28 215-220
  • 26 Summers R M, Hedlund L W, Cofer G P et al. MR microscopy of the rat carotid artery after balloon injury by using an implanted imaging coil.  Magn Reson Med. 1995;  33 785-789
  • 27 Beckmann N, Joergensen J, Bruttel K et al. Magnetic resonance imaging for the evaluation of rejection of a kidney allograft in the rat.  Transpl Int. 1996;  9 175-183
  • 28 Choy M, Ganesan V, Thomas D L et al. The chronic vascular and haemodynamic response after permanent bilateral common carotid occlusion in newborn and adult rats.  J Cereb Blood Flow Metab. 2006;  26 1066-1075
  • 29 Itskovich V V, Choudhury R P, Aguinaldo J G et al. Characterization of aortic root atherosclerosis in ApoE knockout mice: high-resolution in vivo and ex vivo MRM with histological correlation.  Magn Reson Med. 2003;  49 381-385
  • 30 Chaabane L, Soulas E C, Contard F et al. High-resolution magnetic resonance imaging at 2 Tesla: potential for atherosclerotic lesions exploration in the apolipoprotein E knockout mouse.  Invest Radiol. 2003;  38 532-538
  • 31 Kass M, Haddad H. Cardiac allograft vasculopathy: pathology, prevention and treatment.  Curr Opin Cardiol. 2006;  21 132-137
  • 32 Kass M, Allan R, Haddad H. Diagnosis of graft coronary artery disease.  Curr Opin Cardiol. 2007;  22 139-145
  • 33 Almenar L, Igual B, Martinez-Dolz L et al. Utility of cardiac magnetic resonance imaging for the diagnosis of heart transplant rejection.  Transplant Proc. 2003;  35 1962-1964
  • 34 Usta E, Burgstahler C, Aebert H et al. The challenge to detect heart transplant rejection and transplant vasculopathy non-invasively – a pilot study.  J Cardiothorac Surg. 2009;  4 43
  • 35 Wehr S, Rudin M, Joergensen J et al. Allo- and autotransplantation of carotid artery – a new model of chronic graft vessel disease: evaluation by magnetic resonance imaging and histology.  Transplantation. 1997;  64 20-27
  • 36 Beckmann N, Stirnimann R, Bochelen D. High-resolution magnetic resonance angiography of the mouse brain: application to murine focal cerebral ischemia models.  J Magn Reson. 1999;  140 442-450
  • 37 Manninen H I, Vanninen R L, Laitinen M et al. Intravascular ultrasound and magnetic resonance imaging in the assessment of atherosclerotic lesions in rabbit aorta. Correlation to histopathologic findings.  Invest Radiol. 1998;  33 464-471

1 Both senior authors contributed equally to this work.

Stephan M. Ensminger, MD

Department of Cardiac Surgery
University of Erlangen-Nuremberg

Krankenhausstr. 42

91054 Erlangen

Germany

Phone: +49 9 13 18 53 39 85

Fax: +49 9 13 18 53 27 68

Email: stephan.ensminger@uk-erlangen.de