Planta Med 2011; 77(5): 407-415
DOI: 10.1055/s-0030-1250461
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Application of Proteomic and Bioinformatic Techniques for Studying the Hepatoprotective Effect of Dioscin against CCl4-induced Liver Damage in Mice

Binan Lu1 , Lianhong Yin1 , Lina Xu1 , Jinyong Peng1
  • 1College of Pharmacy, Dalian Medical University, Dalian, China
Further Information

Publication History

received August 22, 2010 revised Sept. 17, 2010

accepted Sept. 30, 2010

Publication Date:
26 October 2010 (online)

Abstract

In this study, the significant hepatoprotective effect of dioscin against CCl4-induced acute liver damage in mice was first discovered, and the effect produced by dioscin at the dose of 100 mg/kg was equal to the action produced by silymarin at the dose of 200 mg/kg. Then, 1-dimension gel electrophoresis was used to separate the liver proteins, and five differentially expressed bands were selected. After in-gel digestion, 71 proteins were identified by nano-RP-HPLC‐ESI‐MS/MS/MS. Further network analysis suggested that the identified proteins formed a connected protein interaction subnetwork. Ten functional categories were selected to demonstrate the distribution of the proteins by Gene Ontology (GO) enrichment analysis. Six of the proteins, heat shock protein 5 (HSPA5), annexin 6 (ANXA6), isovaleryl-CoA dehydrogenase (IVD), ribosomal protein S6 (RPS6), cytoglobin (Cygb), and nucleoside diphosphate kinase A (NDPK‐A), were validated by Western blotting assay. They might be involved in the hepatoprotective effect of dioscin, and their investigation could be useful, together with the determination of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) levels, as well as the liver histopathologic study, for the elucidation of the action mechanisms of dioscin against CCl4-induced liver injury. Our work shows that the validated proteins should be considered as biomarkers for the investigation of acute liver injury, and its results should contribute to the therapy of liver damage by dioscin in the future.

References

  • 1 Larson A M, Polson J, Fontana R J, Davern T J, Lalani E, Hynan L S, Reisch J S, Schiødt F V, Ostapowicz G, Shakil A O, Lee W M. Acute Liver Failure Study Group. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study.  Hepatology. 2005;  42 1364-1372
  • 2 Domenicali M, Caraceni P, Giannone F, Baldassarre M, Lucchetti G, Quarta C, Patti C, Catani L, Nanni C, Lemoli R M, Bernardi M. A novel model of CCl4- induced cirrhosis with ascites in the mouse.  J Hepatol. 2009;  51 991-999
  • 3 Mohamed Saleem T S, Madhusudhana Chetty C, Ramkanth S, Rajan V S T, Mahesh Kumar K, Gauthaman K. Hepatoprotective Herbs – A Review.  Int J Res Pharm Sci. 2010;  1 1-5
  • 4 Nakamura T, Komori C, Lee Y, Hashimoto F, Yahara S, Nohara T, Ejima A. Cytotoxic activities of Solanum steroidal glycosides.  Biol Pharm Bull. 1996;  19 564-566
  • 5 Wang Z, Zhou J B, Ju Y, Zhang H, Liu M, Li X. Effect of two saponins extracted from the Polygonatum zanlanscianense Pamp on the human leukemia (HL-60) cells.  Biol Pharm Bull. 2001;  24 159-162
  • 6 Sautour M, Mitaine-Offer A C, Miyamoto T, Dongmo A, Lacaille-Dubois M A. Antifungal steroid saponins from Dioscorea cayenensis.  Planta Med. 2004;  70 90-92
  • 7 Takechi M, Shimada S, Tanaka Y. Structure-activity relationships of the saponins dioscin and dioscinin.  Phytochemistry. 1991;  30 3943-3944
  • 8 Zhao J, Jiang P, Zhang W. Molecular networks for the study of TCM pharmacology.  Brief Bioinform. 2010;  11 417-430
  • 9 Yue Q X, Cao Z W, Guan S H, Liu X H, Tao L, Wu W Y, Li Y X, Yang P Y, Liu X, Guo D A. Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network.  Mol Cell Proteomics. 2008;  7 949-961
  • 10 Cecconi D, Donadelli M, Dalla P E, Rinalducci S, Zolla L, Scupoli M T, Righetti P G, Scarpa A, Palmieri M. Synergistic effect of trichostatin A and 5-aza-2′- deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: a proteomic study.  Proteomics. 2009;  9 1952-1966
  • 11 Rodríguez-Martín A, Acosta R, Liddell S, Núñez F, Benito M J, Asensio M A. Characterization of the novel antifungal chitosanase PgChP and the encoding gene from Penicillium chrysogenum.  Appl Microbiol Biotechnol. 2010;  88 519-528
  • 12 Boutin M, Berthelette C, Gervais F G, Scholand M B, Hoidal J, Leppert M F, Bateman K P, Thibault P. High-sensitivity nanoLC-MS/MS analysis of urinary desmosine and isodesmosine.  Anal Chem. 2009;  81 1881-1887
  • 13 Mohammed S, Kraiczek K, Pinkse M W, Lemeer S, Benschop J J, Heck A J. Chip-Based Enrichment and NanoLC-MS/MS Analysis of Phosphopeptides from Whole Lysates.  J Proteome Res. 2008;  7 1565-1571
  • 14 Lu B N, Hu M M, Liu K X, Peng J Y. Cytotoxicity of berberine on human cervical carcinoma HeLa cells through mitochondria, death receptor and MAPK path- ways, and in-silico drug-target prediction.  Toxicol In Vitro. 2010;  24 1482-1490
  • 15 Hsu Y W, Tsai C F, Chen W K, Lu F J. Protective effects of seabuckthorn (Hippophae rhamnoides L.) seed oil against carbon tetrachloride-induced hepatotoxicity in mice.  Food Chem Toxicol. 2009;  47 2281-2288
  • 16 Wang N, Li P, Wang Y, Peng W, Wu Z, Tan S, Liang S, Shen X, Su W. Hepatoprotective effect of Hypericum japonicum extract and its fractions.  J Ethnopharmacol. 2008;  116 1-6
  • 17 Xenarios I, Rice D W, Salwinski L, Baron M K, Marcotte E M, Eisenberg D. DIP: the database of interacting proteins.  Nucl Acids Res. 2000;  28 289-291
  • 18 Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G. MINT: a Molecular INTeraction database.  FEBS Lett. 2002;  513 135-140
  • 19 Klein P, Ravi R. A nearly best-possible approximation algorithm for node-weighted steiner trees.  J Algorith. 1995;  19 104-14
  • 20 Tavazoie S, Hughes J D, Campbell M J, Cho R J, Church G M. Systematic determination of genetic network architecture.  Nat Genet. 1999;  22 281-285
  • 21 Zhao J, Ding G H, Tao L, Yu H, Yu Z H, Luo J H, Cao Z W, Li Y X. Modular co-evolution of metabolic networks.  BMC Bioinform. 2007;  8 311
  • 22 Yu C, Wang F, Jin C, Wu X, Chan W K, McKeehan W L. Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice.  Am J Pathol. 2002;  161 2003-2010
  • 23 Recknagel R O, Glende Jr. E A, Dolak J A, Waller R L. Mechanisms of carbon tetrachloride toxicity.  Pharmacol Ther. 1989;  43 139-154
  • 24 Jia N, Liu X, Wen J, Qian L, Qian X, Wu Y, Fan G. A proteomic method for analysis of CYP450s protein expression changes in carbon tetrachloride induced male rat liver microsomes.  Toxicology. 2007;  237 1-11
  • 25 Yuan L P, Chen F H, Ling L, Dou P F, Bo H, Zhong M M, Xia L J. Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis.  J Ethnopharmacol. 2008;  116 539-546
  • 26 Lièvremont J P, Rizzuto R, Hendershot L, Meldolesi J. BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+.  J Biol Chem. 1997;  272 30873-30879
  • 27 Little E, Ramakrishnan M, Roy B, Gazita G, Lee A S. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications.  Crit Rev Eukaryot Gene Expr. 1994;  4 1-18
  • 28 Yu Z, Luo H, Fu W, Mattson M P. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis.  Exp Neurol. 1999;  155 302-314
  • 29 Gerke V, Moss S E. Annexins and membrane dynamics.  Biochim Biophys Acta. 1997;  1357 129-154
  • 30 Donato R, Russo-Marie F. The annexins: structure and functions.  Cell Calcium. 1999;  26 85-89
  • 31 Monastyrskaya K, Babiychuk E B, Hostettler A, Wood P, Grewal T, Draeger A. Plasma membrane-associated annexin A6 reduces Ca2+ entry by stabilizing the cortical actin cytoskeleton.  J Biol Chem. 2009;  284 17227-17242
  • 32 Förster-Fromme K, Jendrossek D. Biochemical characterization of isovaleryl-CoA dehydrogenase (LiuA) of Pseudomonas aeruginosa and the importance of liu genes for a functional catabolic pathway of methyl-branched compounds.  FEMS Microbiol Lett. 2008;  286 78-84
  • 33 Man K N, Philipsen S, Tan-Un K C. Localization and expression pattern of cytoglobin in carbon tetrachloride-induced liver fibrosis.  Toxicol Lett. 2008;  183 36-44
  • 34 Colomb M G, Chéruy A, Vignais P V. Nucleoside diphosphokinase from beef heart mitochondria. Purification and properties.  Biochemistry. 1969;  8 1926-1939

Dr. Jinyong Peng

College of Pharmacy
Dalian Medical University

No. 9 Western Lvshun South Road

Dalian 116044

China

Phone: +86 4 11 86 11 04 11

Fax: +86 4 11 86 11 04 11

Email: jinyongpeng2005@163.com