Planta Med 2011; 77(6): 672-678
DOI: 10.1055/s-0030-1250549
Tropical Diseases
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Curcuma as a Parasiticidal Agent: A Review

Mohamed Haddad1 , 2 , Michel Sauvain1 , 2 , Eric Deharo1 , 2
  • 1Laboratoire de pharmacochimie des substances naturelles et pharmacophores redox, UMR 152, UPS, Université de Toulouse, Toulouse, France
  • 2IRD, UMR-152, Mission IRD, Casilla 18-1209 Lima, Peru
Weitere Informationen

Publikationsverlauf

received May 21, 2010 revised October 20, 2010

accepted October 23, 2010

Publikationsdatum:
23. November 2010 (online)

Abstract

Members of the Curcuma plant species (Zingiberaceae) have been used for centuries in cooking, cosmetics, staining and in traditional medicine as “omnipotent” remedies. Herbal preparations made with, and molecules extracted from, Curcuma have been shown to possess a wide variety of pharmacological properties against malignant proliferation, hormonal disorders, inflammation, and parasitosis among other conditions. This review evaluates Curcuma and its associated bioactive compounds, particularly focusing on studies examining the parasiticidal activity of these components against the tropical parasites Plasmodium, Leishmania, Trypanosoma, Schistosoma and more generally against other cosmopolitan parasites (nematodes, Babesia, Candida, Giardia, Coccidia and Sarcoptes).

References

  • 1 Aggarwal B B, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold.  Adv Exp Med Biol. 2007;  595 1-75
  • 2 Galasso V, Kovac B, Modelli A, Ottaviani M F, Pichierri F. Spectroscopic and theoretical study of the electronic structure of curcumin and related fragment molecules.  J Phys Chem A. 2008;  112 2331-2338
  • 3 Strimpakos A S, Sharma R A. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials.  Antioxid Redox Signal. 2008;  10 511-545
  • 4 Chen C, Johnston T D, Jeon H, Gedaly R, McHugh P P, Burke T G, Ranjan D. An in vitro study of liposomal curcumin: stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus-transformed human B-cells.  Int J Pharm. 2009;  366 133-139
  • 5 Lapenna S, Bilia A R, Morris G A, Nilsson M. Novel artemisinin and curcumin micellar formulations: drug solubility studies by NMR spectroscopy.  J Pharm Sci. 2009;  98 3666-3675
  • 6 Maheshwari R K, Singh A K, Gaddipati J, Srimal R C. Multiple biological activities of curcumin: a short review.  Life Sci. 2006;  78 2081-2087
  • 7 Goel A, Kunnumakkara A B, Aggarwal B B. Curcumin as “Curecumin”: from kitchen to clinic.  Biochem Pharmacol. 2008;  75 787-809
  • 8 Hatcher H, Planalp R, Cho J, Torti F M, Torti S V. Curcumin: from ancient medicine to current clinical trials.  Cell Mol Life Sci. 2008;  65 1631-1652
  • 9 Enserink M. Epidemiology. Lower malaria numbers reflect better estimates and a glimmer of hope.  Science. 2008;  321 1620
  • 10 Murnigsih T, Subeki Matsuura H, Takahashi K, Yamasaki M, Yamato O, Maede Y, Katakura K, Suzuki M, Kobayashi S, Chairul Yoshihara T. Evaluation of the inhibitory activities of the extracts of Indonesian traditional medicinal plants against Plasmodium falciparum and Babesia gibsoni.  J Vet Med Sci. 2005;  67 829-831
  • 11 Rasmussen H B, Christensen S B, Kvist L P, Karazmi A. A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa.  Planta Med. 2000;  66 396-398
  • 12 Mishra S, Karmodiya K, Surolia N, Surolia A. Synthesis and exploration of novel curcumin analogues as anti-malarial agents.  Bioorg Med Chem. 2008;  16 2894-2902
  • 13 Bentzen P J, Lang E, Lang F. Curcumin induced suicidal erythrocyte death.  Cell Physiol Biochem. 2007;  19 153-164
  • 14 Foller M, Bobbala D, Koka S, Huber S M, Gulbins E, Lang F, Saleheen D, Ali S A, Ashfaq K, Siddiqui A A, Agha A, Yasinzai M M. Suicide for survival – death of infected erythrocytes as a host mechanism to survive malaria.  Cell Physiol Biochem. 2009;  24 133-140
  • 15 Srivastava I K, Vaidya A B. A mechanism for the synergistic antimalarial action of atovaquone and proguanil.  Antimicrob Agents Chemother. 1999;  43 1334-1339
  • 16 Ligeret H, Barthelemy S, Bouchard Doulakas G, Carrupt P A, Tillement J P, Labidalle S, Morin D. Fluoride curcumin derivatives: new mitochondrial uncoupling agents.  FEBS Lett. 2004;  569 37-42
  • 17 Reddy R C, Vatsala P G, Keshamouni V G, Padmanaban G, Rangarajan P N. Curcumin for malaria therapy.  Biochem Biophys Res Commun. 2005;  326 472-474
  • 18 Cui L, Miao J, Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species.  Antimicrob Agents Chemother. 2007;  51 488-494
  • 19 Singh N, Misra K. Computational screening of molecular targets in Plasmodium for novel non resistant anti-malarial drugs.  Bioinformation. 2009;  3 255-262
  • 20 Ji H F, Shen L. Interactions of curcumin with the PfATP6 model and the implications for its antimalarial mechanism.  Bioorg Med Chem Lett. 2009;  19 2453-2455
  • 21 Nandakumar D N, Nagaraj V A, Vathsala P G, Rangarajan P, Padmanaban G. Curcumin-artemisinin combination therapy for malaria.  Antimicrob Agents Chemother. 2006;  50 1859-1860
  • 22 Martinelli A, Rodrigues L A, Cravo P. Plasmodium chabaudi: efficacy of artemisinin + curcumin combination treatment on a clone selected for artemisinin resistance in mice.  Exp Parasitol. 2008;  119 304-307
  • 23 Mishra K, Dash A P, Swain B K, Dey N. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin.  Malar J. 2009;  8 26
  • 24 Witkowski B, Berry A, Benoit-Vical F. Resistance to antimalarial compounds: methods and applications.  Drug Resist Updat. 2009;  12 42-50
  • 25 Chearwae W, Anuchapreeda S, Nandigama K, Ambudkar S V, Limtrakul P. Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from turmeric powder.  Biochem Pharmacol. 2004;  68 2043-2052
  • 26 Alvar J, Yactayo S, Bern C. Leishmaniasis and poverty.  Trends Parasitol. 2006;  22 552-557
  • 27 Koide T, Nose M, Ogihara Y, Yabu Y, Ohta N. Leishmanicidal effect of curcumin in vitro.  Biol Pharm Bull. 2002;  25 131-133
  • 28 Araujo C A, Alegrio L V, Gomes D C, Lima M E, Gomes-Cardoso L, Leon L L. Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis.  Mem Inst Oswaldo Cruz. 1999;  94 791-794
  • 29 Gomes Dde C, Alegrio L V, Leon L L, de Lima M E. Total synthesis and anti-leishmanial activity of some curcumin analogues.  Arzneimittelforschung. 2002;  52 695-698
  • 30 Saleheen D, Ali S A, Ashfaq K, Siddiqui A A, Agha A, Yasinzai M M. Latent activity of curcumin against leishmaniasis in vitro.  Biol Pharm Bull. 2002;  25 386-389
  • 31 Alves L V, Temporal R M, Cysne-Finkelstein L, Leon L L. Efficacy of a diarylheptanoid derivative against Leishmania amazonensis.  Mem Inst Oswaldo Cruz. 2003;  98 553-555
  • 32 Alves L V, do Canto-Cavalheiro M M, Cysne-Finkelstein L, Leon L. In vitro antiproliferative effects of several diaryl derivatives on Leishmania spp.  Biol Pharm Bull. 2003;  26 453-456
  • 33 Das R, Roy A, Dutta N, Majumder H K. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani.  Apoptosis. 2008;  13 867-882
  • 34 Changtam C, de Koning H P, Ibrahim H, Sajid M S, Gould M K, Suksamrarn A. Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species.  Eur J Med Chem. 2010;  45 941-956
  • 35 Chan M M, Adapala N S, Fong D. Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania.  Parasitol Res. 2005;  96 49-56
  • 36 Moncayo A, Silveira A C. Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy.  Mem Inst Oswaldo Cruz. 2009;  104 (Suppl. 1) 17-30
  • 37 Simarro P P, Jannin J, Cattand P. Eliminating human African trypanosomiasis: where do we stand and what comes next?.  PLoS Med. 2008;  5 e55
  • 38 Nose M, Koide T, Ogihara Y, Yabu Y, Ohta N. Trypanocidal effects of curcumin in vitro.  Biol Pharm Bull. 1998;  21 643-645
  • 39 Chitsulo L, Loverde P, Engels D. Schistosomiasis.  Nat Rev Microbiol. 2004;  2 12-13
  • 40 Richter J. The impact of chemotherapy on morbidity due to schistosomiasis.  Acta Trop. 2003;  86 161-183
  • 41 Fenwick A, Webster J P. Schistosomiasis: challenges for control, treatment and drug resistance.  Curr Opin Infect Dis. 2006;  19 577-582
  • 42 El-Ansary A K, Ahmed S A, Aly S A. Antischistosomal and liver protective effects of Curcuma longa extract in Schistosoma mansoni infected mice.  Indian J Exp Biol. 2007;  45 791-801
  • 43 El-Banhawey M A, Ashry M A, El-Ansary A K, Aly S A. Effect of Curcuma longa or parziquantel on Schistosoma mansoni infected mice liver – histological and histochemical study.  Indian J Exp Biol. 2007;  45 877-889
  • 44 Shoheib Z S, El-Nouby K A, Deyab F A, Dar Y D, Kabbash A M. Potential effect of Curcuma longa extract on infectivity and pathogenicity of Schistosoma mansoni cercariae.  J Egypt Soc Parasitol. 2008;  38 141-159
  • 45 Allam G. Immunomodulatory effects of curcumin treatment on murine schistosomiasis mansoni.  Immunobiology. 2009;  214 712-727
  • 46 Magalhaes L G, Machado C B, Morais E R, Moreira E B, Soares C S, da Silva S H, Da Silva Filho A A, Rodrigues V. In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms.  Parasitol Res. 2009;  104 1197-1201
  • 47 Shih P C, Lee H H, Lai S C, Chen K M, Jiang S T, Chen Y F, Shiow S J. Efficacy of curcumin therapy against Angiostrongylus cantonensis-induced eosinophilic meningitis.  J Helminthol. 2007;  81 1-5
  • 48 Kiuchi F, Goto Y, Sugimoto N, Akao N, Kondo K, Tsuda Y. Nematocidal activity of turmeric: synergistic action of curcuminoids.  Chem Pharm Bull (Tokyo). 1993;  41 1640-1643
  • 49 Vannier E, Krause P J. Update on babesiosis.  Interdiscip Perspect Infect Dis. 2009;  2009 984568
  • 50 Subeki, Matsuura H, Yamasaki M, Yamato O, Maede Y, Katakura K, Suzuki M, Trimurningsih, Chairul, Yoshihara T. Effects of central Kalimantan plant extracts on intraerythrocytic Babesia gibsoni in culture.  J Vet Med Sci. 2004;  66 871-874
  • 51 Kasahara K, Nomura S, Subeki, Matsuura H, Yamasaki M, Yamato O, Maede Y, Katakura K, Suzuki M, Trimurningsih, Chairul, Yoshihara T. Anti-babesial compounds from Curcuma zedoaria.  Planta Med. 2005;  71 482-484
  • 52 Matsuura H, Nomura S, Subeki, Yamada K, Yamasaki M, Yamato O, Maede Y, Katakura K, Trimurningsih, Chairul, Yoshihara T, Nabeta K. Anti-babesial compounds from Curcuma xanthorrhiza.  Nat Prod Res. 2007;  21 328-333
  • 53 Yamada K, Subeki, Nabeta K, Yamasaki M, Katakura K, Matsuura H. Isolation of antibabesial compounds from Brucea javanica, Curcuma xanthorrhiza, and Excoecaria cochinchinensis.  Biosci Biotechnol Biochem. 2009;  73 776-780
  • 54 Savioli L, Smith H, Thompson A. Giardia and Cryptosporidium join the ‘Neglected Diseases Initiative .  Trends Parasitol. 2006;  22 203-208
  • 55 Shahiduzzaman M, Dyachenko V, Khalafalla R E, Desouky A Y, Daugschies A. Effects of curcumin on Cryptosporidium parvum in vitro.  Parasitol Res. 2009;  105 1155-1161
  • 56 Abdel-Hady N M, El-Sherbini G T, Morsy T A. Treatment of Toxoplasma gondii by two Egyptian herbs.  J Egypt Soc Parasitol. 2008;  38 1025-1026
  • 57 Al-Zanbagi N A, Zelai N T. Two methods for attenuating Toxoplasma gondii tachyzoites RH strain by using ethanol extract of Curcuma longa.  J Egypt Soc Parasitol. 2008;  38 965-976
  • 58 Perez-Arriaga L, Mendoza-Magana M L, Cortes-Zarate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanroman R, Ramirez-Herrera M A. Cytotoxic effect of curcumin on Giardia lamblia trophozoites.  Acta Trop. 2006;  98 152-161
  • 59 Sharma R A, McLelland H R, Hill K A, Ireson C R, Euden S A, Manson M M, Pirmohamed M, Marnett L J, Gescher A J, Steward W P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer.  Clin Cancer Res. 2001;  7 1894-1900
  • 60 Charles V, Charles S X. The use and efficacy of Azadirachta indica ADR (‘Neem ) and Curcuma longa (‘Turmeric ) in scabies. A pilot study.  Trop Geogr Med. 1992;  44 178-181
  • 61 Cheng A L, Hsu C H, Lin J K, Hsu M M, Ho Y F, Shen T S, Ko J Y, Lin J T, Lin B R, Ming-Shiang W, Yu H S, Jee S H, Chen G S, Chen T M, Chen C A, Lai M K, Pu Y S, Pan M H, Wang Y J, Tsai C C, Hsieh C Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions.  Anticancer Res. 2001;  21 2895-2900
  • 62 Bisht S, Maitra A. Systemic delivery of curcumin: 21st century solutions for an ancient conundrum.  Curr Drug Discov Technol. 2009;  6 192-199
  • 63 Suresh D, Srinivasan K. Studies on the in vitro absorption of spice principles–curcumin, capsaicin and piperine in rat intestines.  Food Chem Toxicol. 2007;  45 1437-1442
  • 64 Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers.  Planta Med. 1998;  64 353-356
  • 65 McGovern S L, Shoichet B K. Kinase inhibitors: not just for kinases anymore.  J Med Chem. 2003;  46 1478-1483
  • 66 Cos P, Vlietinck A J, Berghe D V, Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept .  J Ethnopharmacol. 2006;  106 290-302
  • 67 Houghton P J, Howes M J, Lee C C, Steventon G. Uses and abuses of in vitro tests in ethnopharmacology: visualizing an elephant.  J Ethnopharmacol. 2007;  110 391-400

Dr. Mohamed Haddad

Université de Toulouse
UPS
UMR 152 (Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox)

118 Rte de Narbonne

31062 Toulouse Cedex 9

France

Telefon: +33 5 62 25 68 69

Fax: +33 5 62 25 98 02

eMail: mohamed.haddad@ird.fr