RSS-Feed abonnieren
DOI: 10.1055/s-0030-1250599
© Georg Thieme Verlag KG Stuttgart · New York
Mulberroside A Possesses Potent Uricosuric and Nephroprotective Effects in Hyperuricemic Mice
Publikationsverlauf
received July 23, 2010
revised October 13, 2010
accepted Nov. 9, 2010
Publikationsdatum:
10. Dezember 2010 (online)
Abstract
Mulberroside A is a major stilbene glycoside of Morus alba L. (Moraceae), which is effectively used for the treatment of hyperuricemia and gout in traditional Chinese medicine. We examined whether mulberroside A had effects on renal urate underexcretion and dysfunction in oxonate-induced hyperuricemic mice and investigated the potential uricosuric and nephroprotective mechanisms involved. Mulberroside A at 10, 20, and 40 mg/kg decreased serum uric acid levels and increased urinary urate excretion and fractional excretion of uric acid in hyperuricemic mice. Simultaneously, it reduced serum levels of creatinine and urea nitrogen (10–40 mg/kg), urinary N-acetyl-β-D-glucosaminidase activity (10–40 mg/kg), β 2-microglobulin (10–40 mg/kg) and albumin (20–40 mg/kg), and increased creatinine clearance (10–40 mg/kg) in hyperuricemic mice. Furthermore, mulberroside A downregulated mRNA and protein levels of renal glucose transporter 9 (mGLUT9) and urate transporter 1 (mURAT1), and upregulated mRNA and protein levels of renal organic anion transporter 1 (mOAT1) and organic cation and carnitine transporters (mOCT1, mOCT2, mOCTN1, and mOCTN2) in hyperuricemic mice. This is the first study demonstrating that mulberroside A exhibits uricosuric and nephroprotective effects mediated in part by cooperative attenuation of the expression alterations of renal organic ion transporters in hyperuricemic mice. These data suggest that mulberroside A may be a new drug candidate for the treatment of hyperuricemia with renal dysfunction.
Key words
mulberroside A - hyperuricemia - uricosuric - nephroprotective - organic anion transporters - organic cation/carnitine transporters - Morus alba L. - Moraceae
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 Choi H K, Mount D B, Reginato A M. Pathogenesis of gout. Ann Intern Med. 2005; 143 499-516
- 2 Weiner D E, Tighiouart H, Elsayed E F, Griffith J L, Salem D N, Levey A S. Uric acid and incident kidney disease in the community. J Am Soc Nephrol. 2008; 19 1204-1211
- 3 Imaoka T, Kusuhara H, Adachi-Akahane S, Hasegawa M, Morita N, Endou H, Sugiyama Y. The renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules. J Am Soc Nephrol. 2004; 15 2012-2022
- 4 Caulfield M J, Munroe P B, O'Neill D, Witkowska K, Charchar F J, Doblado M, Evans S, Eyheramendy S, Onipinla A, Howard P, Shaw-Hawkins S, Dobson R J, Wallace C, Newhouse S J, Brown M, Connell J M, Dominiczak A, Farrall M, Lathrop G M, Samani N J, Kumari M, Marmot M, Brunner E, Chambers J, Elliott P, Kooner J, Laan M, Org E, Veldre G, Viigimaa M, Cappuccio F P, Ji C, Iacone R, Strazzullo P, Moley K H, Cheeseman C. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008; 5 1509-1523
- 5 Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha S H, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature. 2002; 417 447-452
- 6 Ichida K, Hosoyamada M, Kimura H, Takeda M, Utsunomiya Y, Hosoya T, Endou H. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 2003; 63 143-155
- 7 Eraly S A, Vallon V, Rieg T, Gangoiti J A, Wikoff W R, Siuzdak G, Barshop B A, Nigam S K. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics. 2008; 33 180-192
- 8 Grover B, Buckley D, Buckley A R, Cacini W. Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther. 2004; 308 949-956
- 9 Ji L, Masuda S, Saito H, Inui K. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int. 2002; 62 514-524
- 10 Tokuhiro S, Yamada R, Chang X T, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H, Nagashima M, Yoshino S, Mabuchi A, Sekine A, Saito S, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet. 2003; 35 341-348
- 11 Glube N, Closs E, Langguth P. OCTN2-mediated carnitine uptake in a newly discovered human proximal tubule cell line (Caki-1). Mol Pharm. 2007; 4 160-168
- 12 Harris M D, Siegel L B, Alloway J A. Gout and hyperuricemia. Am Fam Physician. 1999; 59 925-934
- 13 Nunome S, Kondo K, Terabayashi S, Sasaki H, Xiao C, Hao X, Okada M. Studies on the quality of mulberry bark (2). Botanical source and chemical components of mulberry cortex. Nat Med. 2000; 54 33-37
- 14 Habu Y, Yano I, Okuda M, Fukatsu A, Inui K. Restored expression and activity of organic ion transporters rOAT1, rOAT3 and rOCT2 after hyperuricemia in the rat kidney. Biochem Pharmacol. 2005; 69 993-999
- 15 Kang D H, Nakagawa T, Feng L L, Watanabe S, Han L, Mazzali M, Truong L, Harris R, Johnson R J. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002; 13 2888-2897
- 16 Hall I H, Scoville J P, Reynolds D J, Simlot R, Duncan P. Substituted cyclic imides as potential antigout agents. Life Sci. 1990; 46 1923-1927
- 17 Hu Q H, Wang C A, Li J M, Zhang D M, Kong L D. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am J Physiol Renal Physiol. 2009; 297 F1080-F1091
- 18 Hu Q H, Jiao R Q, Wang X, Lv Y Z, Kong L D. Simiao pill ameliorates urate underexcretion and renal dysfunction in hyperuricemic mice. J Ethnopharmacol. 2010; 128 685-692
- 19 Rizwan A N, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007; 24 450-470
- 20 Iseki K, Oshiro S, Tozawa M, Iseki C, Ikemiya Y, Takishita S. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res. 2001; 24 691-697
- 21 Chonchol M, Shlipak M G, Katz R, Sarnak M J, Newman A B, Siscovick D S, Kestenbaum B, Carney J K, Fried L F. Relationship of uric acid with progression of kidney disease. Am J Kidney Dis. 2007; 50 239-247
- 22 Price R G. Urinalysis to exclude and monitor nephrotoxicity. Clin Chim Acta. 2000; 297 173-182
- 23 Lauwerys R, Bernard A. Preclinical detection of nephrotoxicity – description of the tests and appraisal of their health significance. Toxicol Lett. 1989; 46 13-29
- 24 Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008; 83 744-751
- 25 Vitart V, Rudan I, Hayward C, Gray N K, Floyd J, Palmer C N, Knott S A, Kolcic I, Polasek O, Graessler J, Wilson J F, Marinaki A, Riches P L, Shu X, Janicijevic B, Smolej-Narancic N, Gorgoni B, Morgan J, Campbell S, Biloglav Z, Barac-Lauc L, Pericic M, Klaric I M, Zgaga L, Skaric-Juric T, Wild S H, Richardson W A, Hohenstein P, Kimber C H, Tenesa A, Donnelly L A, Fairbanks L D, Aringer M, McKeigue P M, Ralston S H, Morris A D, Rudan P, Hastie N D, Campbell H, Wright A F. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008; 40 437-442
- 26 Preitner F, Bonny O, Laverriere A, Rotman S, Firsov D, Da Costa A, Metref S, Thorens B. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci USA. 2009; 106 15501-15506
- 27 Vazquez-Mellado J, Jimenez-Vaca A L, Cuevas-Covarrubias S, Alvarado-Romano V, Pozo-Molina G, Burgos-Vargas R. Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology. 2007; 46 215-219
- 28 Hosoyamada M, Ichida K, Enomoto A, Hosoya T, Endou H. Function and localization of urate transporter 1 in mouse kidney. J Am Soc Nephrol. 2004; 15 261-268
- 29 Nigam S K, Bush K T, Bhatnagar V. Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues. Nat Clin Pract Nephrol. 2007; 3 443-448
- 30 Sakurai Y, Motohashi H, Ueo H, Masuda S, Saito H, Okuda M, Mori N, Matsuura M, Doi T, Fukatsu A, Ogawa O, Inui K. Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res. 2004; 21 61-67
- 31 Urakami Y, Kimura N, Okuda M, Inui K. Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res. 2004; 21 976-981
- 32 Brown C D A, Sayer R, Windass A S, Haslam I S, De Broe M E, D'Haese P C, Verhulst A. Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling. Toxicol Appl Pharmacol. 2008; 233 428-438
- 33 Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, Hosoya T. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004; 15 164-173
- 34 Siu Y P, Leung K T, Tong M K H, Kwan T H. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006; 47 51-59
- 35 Zhaxi M C, Chen L X, Li X G, Komatsu K, Yao X S, Qiu F. Three major metabolites of mulberroside A in rat intestinal contents and feces. Planta Med. 2010; 76 362-364
- 36 Qiu F, Komatsu K, Saito K, Kawasaki K, Yao X S, Kano Y. Pharmacological properties of traditional medicines. XXII. Pharmacokinetic study of mulberroside A and its metabolites in rat. Biol Pharm Bull. 1996; 19 1463-1467
- 37 Keembiyehetty C, Augustin R, Carayannopoulos M O, Steer S, Manolescu A, Cheeseman C I, Moley K H. Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol Endocrinol. 2006; 20 686-697
- 38 Hosoyamada M, Sekine T, Kanai Y, Endou H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Physiol Renal Physiol. 1999; 276 F122-F128
- 39 Kakehi M, Koyabu N, Nakamura T, Uchiumi T, Kuwano M, Ohtani H, Sawada Y. Functional characterization of mouse cation transporter mOCT2 compared with mOCT1. Biochem Biophys Res Commun. 2002; 296 644-650
- 40 Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, Tsuji A. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997; 419 107-111
- 41 Lu K M, Nishimori H, Nakamura Y, Shima K, Kuwajima M. A missense mutation of mouse OCTN2, a sodium-dependent carnitine cotransporter, in the juvenile visceral steatosis mouse. Biochem Biophys Res Commun. 1998; 252 590-594
Ling-Dong Kong
School of Life Sciences
Nanjing University
No. 22, Hankou Road
Nanjing 210093
P. R. China
Telefon: +86 25 83 59 46 91
Fax: +86 25 83 59 46 91
eMail: kongld@nju.edu.cn
- www.thieme-connect.de/ejournals/toc/plantamedica