Planta Med 2011; 77(9): 915-921
DOI: 10.1055/s-0030-1250659
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Stage of Action of Naturally Occurring Andrographolides and Their Semisynthetic Analogues against Herpes Simplex Virus Type 1 in Vitro

Chantana Aromdee1 , Supawadee Suebsasana1 , Tipaya Ekalaksananan2 , Chamsai Pientong2 , Sasithorn Thongchai2
  • 1Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
  • 2Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
Further Information

Publication History

received April 6, 2010 revised Nov. 30, 2010

accepted Dec. 3, 2010

Publication Date:
21 January 2011 (online)

Abstract

Andrographolide, an ent-labdane diterpene, has been found to have activities against many viruses. Three free hydroxyls at C-3, C-14, and C-19 are involved in the activities. No stage of action has ever been explored. In this study, the naturally occurring compounds of andrographolide, 14-deoxy-11,12-didehydroandrographolide and 14-deoxyandrographolide, and eight semisynthetic analogues, modified at the three free OHs of andrographolide, were explored for their anti-HSV-1 activities. The concentrations that produced 80 % viable cells were used to test for both pre- and postinfections by using cytopathic effect reduction assays on Vero cell cultures. Three analogues, 14-acetyl-3,19-isopropylideneandrographolide, 14-acetylandrographolide, and 3,14,19-triacetylandrographolide, significantly exhibited preinfection step activity against the virus. For postinfection activity, only 3,19-isopropylideneandrographolide showed absolute inhibition of HSV-1 replication. Meanwhile, andrographolide exhibited slight inhibitory activities of 34.48 ± 6.93 % and 56.90 ± 2.65 % against HSV-1 for pre- and postinfection, respectively. The results confirm that the three hydroxyl moieties play a role in the anti-HSV-1 activity of andrographolide. From the study, it can be concluded that 14-acetyl analogues are good for blocking the viral entry, and 3,19-isopropylideneandrographolide, a cyclic dioxane analogue, is good for exerting postinfection anti-HSV-1 activity.

References

  • 1 Chopra R N, Nayar S L, Chopra I C. Glossary of Indian Medicinal Plants. New Delhi; Council for Scientific and Industrial Research 1956
  • 2 Chang H M, But P P-H. Pharmacology and Applications of Chinese Materia Medica. Singapore; World Scientific Publishing Co. 1987: 918-928
  • 3 Madav S, Tripathi C, Tandan S K, Mishra S. Analgesic, antipyretic, and antiulcerogenic effects of andrographolide.  Indian J Pharm Sci. 1995;  57 121-125
  • 4 Suebsasana S, Pongnaratorn P, Sattayasai J, Arkaravichien T, Tiamkao S, Aromdee C. Analgesic, antipyretic, anti-inflammatory and toxic effects of andrographolide derivatives in experimental animals.  Arch Pharm Res. 2009;  32 1191-1200
  • 5 Abu-Ghefreh A A, Canatan H, Ezeamuzie C I. In vitro and in vivo anti-inflammatory effects of andrographolide.  Int Immunol. 2009;  9 313-318
  • 6 Sheeja K, Guruvayoorappan C, Kuttan G. Antiangiogenic activity of Andrographis paniculata extract and andrographolide.  Int Immunol. 2007;  7 211-221
  • 7 Shen Y-C, Chen C-F, Chiou W-F. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect.  Br J Pharmacol. 2002;  135 399-406
  • 8 Xia Y-F, Ye B-Q, Li Y-D. Andrographolide attenuates inflammation by inhibition of NF-κB activation through covalent modification of reduced cysteine 62 of p 50.  J Immunol. 2004;  173 4207-4217
  • 9 Calabrese C, Berman S H B, Babish J G, Ma X, Shinto L, Dorr M, Wells K, Wenner C A, Standish L J. A phase I trial of andrographolide in HIV positive patients and normal volunteers.  Phytother Res. 2000;  14 333-338
  • 10 Ko H-C, Wei B-L, Chiou W-F. The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells.  J Ethnopharmacol. 2006;  107 205-210
  • 11 Kumar R A, Sridevi K, Kumar N V, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata.  J Ethnopharmacol. 2004;  92 291-295
  • 12 Puri A, Saxena R, Saxena R P, Saxena K C. Immunostimulant agents from Andrographis paniculata.  J Nat Prod. 1993;  56 995-999
  • 13 Fujita T, Fujitani R, Takeda Y, Yamada T, Kido M, Miura T. On the diterpenoids of Andrographis paniculata: X-ray crystallographic analysis of andrographolide and structure determination of new minor diterpenoids.  Chem Pharm Bull. 1984;  32 2117-2125
  • 14 Rao Y K, Vimalamma G, Rao C V, Tzeng Y-M. Flavonoids and andrographolides from Andrographis paniculata.  Phytochemistry. 2004;  65 2317-2321
  • 15 Jada S R, Subur G S, Matthews C, Hamzah A S, Lajis N H, Saad M S, Stevens M F, Stanslas J. Semisynthesis and in vitro anticancer activities of andrographolide analogues.  Phytochemistry. 2007;  68 904-912
  • 16 Matsuda T, Kuroyanagi M, Sugiyama S, Umehara K, Ueno A, Nishi K. Cell differentiation-induceing diterpenes from Andrographis paniculata Nees.  Chem Pharm Bull. 1994;  42 1216-1225
  • 17 Panossian A, Hovhannisyan A, Mamikonyan G, Abrahamian H, Hambardzumyan E, Gabrielian E, Goukasova G, Wikman G, Wagner H. Pharmacokinetic and oral bioavalability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and humans.  Phytomedicine. 2000;  7 351-364
  • 18 Hidalgo M A, Romero A, Figueroa J, Cortés P, Concha I, Hancke J, A Burgos R. Andrographolide interferes with binding of nuclear factor-κB to DNA in HL-60-derived neutrophilic cells.  Br J Pharmacol. 2005;  144 680-686
  • 19 Burgos R A, Seguel K, Perez M, Meneses A, Ortega M, Guarda M I, Loaiza A, Hancke J L. Andrographolide inhibits IFN-gamma and IL-2 cytokine production and protects against cell apoptosis.  Planta Med. 2005;  71 429-434
  • 20 Nanduri S, Nyavanaadi V K, Thunuguntla S S R, Kasu S, Pallerla M K, Ram P S, Rajagopal S, Kumar R A, Ramanujam R, Babu J M, Vyas K, Devi A S, Reddy G O, Akella V. Synthesis and structure-activity relationships of andrographolide analogues as novel cyctotoxic agents.  Bioorg Med Chem Lett. 2004;  14 4711-4717
  • 21 Wiart C, Kumar K, Yusof M Y, Hamimah H, Fauzi Z M, Sulaiman M. Antiviral properties of ent-labdene diterpenes of Andrographis paniculata Nees, inhibitors of herpes simplex virus type 1.  Phytother Res. 2005;  19 1069-1070
  • 22 Aromdee C, Wichitchote P, Jantakun N. Spectrophotometric determination of total lactones in Andrographis paniculata Nee.  Songklanakarin J Sci Technol. 2005;  27 1227-1231
  • 23 Seubsasana S, Ekalaksananan T, Pientong C, Aromdee C. High-performance liquid chromatographic method for andrographolide analogues used for anti-herpes simplex virus type-1 agents. Pure and Applied Chemistry International Conference, Ubon Ratchathani, Thailand 2010
  • 24 Kim M, Kim S K, Park B N, Lee K H, Min G H, Seoh J Y, Park C G, Hwang E S, Cha C Y, Kook Y H. Antiviral effects of 28-deacetylsendanin on herpes simplex virus-1 replication.  Antiviral Res. 1999;  43 103-112
  • 25 Schmidtke M, Schnittler U, Jahn B, Dahse H, Stelzner A. A rapid assay for evaluation of antiviral activity against coxsackie virus B3, influenza virus A, and herpes simplex virus type 1.  J Virol Methods. 2001;  85 133-143
  • 26 Zhu W, Chiu L C, Ooi V E, Chan P K, Ang Jr P O. Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against herpes simplex type 1.  Phytomedicine. 2006;  13 695-701
  • 27 Yang C-M, Cheng H-Y, Lin T-C, Chiang L-C, Lin C-C. Acetone, ethanol and methanol extracts of Phyllanthus urinaria inhibit HSV-2 infection in vitro.  Antiviral Res. 2005;  67 24-30
  • 28 Spivey A C, Arseniyadis S. Nucleophilic catalysis by 4-(dialkylamino)-pyridines revisited—the search for optimal reactivity and selectivity.  Angew Chem Int Ed. 2004;  43 5436-5441
  • 29 Roizman B, Knipe D M, Whitley R J. The replication of herpes simplex viruses. Knipe DM, Howley PM Fields' Virology, 5th edition. New York; Lippincott-Williams and Wilkins 2007: 2501-2601
  • 30 Hudson J B. Antiviral compounds from plants. Boca Raton; CRC Press 1997: 181
  • 31 Ibrahim S S, Boudinot F D, Schinazi R F, Chu C K. Physicochemical properties, bioconversion and disposition of lipophilic prodrugs of 2′,3′-dideoxycytidine.  Antiviral Chem Chemother. 1996;  7 167-172
  • 32 Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J. Prodrugs: design and clinical applications.  Nat Rev Drug Discov. 2008;  7 255-270
  • 33 Denny W A. Prodrug strategies in cancer therapy.  Eur J Med Chem. 2001;  36 577-595

1 Obscured by overlapping with other signals.

Chantana Aromdee

Pharmaceutical Chemistry
Faculty of Pharmaceutical Sciences
Khon Kaen University

123 Mitraparp Road

Khon Kaen 40002

Thailand

Phone: +66 43 36 20 95

Fax: +66 43 20 23 79

Email: chaaro@kku.ac.th