Semin Thromb Hemost 2010; 36(2): 146-156
DOI: 10.1055/s-0030-1251498
© Thieme Medical Publishers

Oxidized LDL-Activated Platelets Induce Vascular Inflammation

Karin Daub1 , Peter Seizer1 , Konstantinos Stellos1 , Björn F. Krämer1 , Boris Bigalke1 , Martin Schaller2 , Suzanne Fateh-Moghadam1 , Meinrad Gawaz1 , Stephan Lindemann1
  • 1Medizinische Klinik, Klinik für Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität Tübingen, Germany
  • 2Hautklinik, Eberhard-Karls-Universität Tübingen, Germany
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
22. April 2010 (online)

Preview

ABSTRACT

Platelets are involved in the initiation of atherosclerosis by adherence to inflamed endothelium. Monocytes bind to these platelets and transmigrate into the vessel wall, transforming into macrophages and foam cells. We have previously shown that lipid-laden platelets are phagocytosed by macrophages. In this study we investigated the functional consequences of oxidized low-density lipoprotein (oxLDL) uptake on platelet function and interaction with the endothelium. Human platelets were isolated from healthy donors and activated by adenosine diphosphate. Immunofluorescence microscopy and flow cytometry revealed that oxLDL is located intracellularly in vesicles. With mepacrine costaining and confocal microtomography, we were able to identify dense granules as the vesicles that contain oxLDL. OxLDL-laden platelets induced intercellular adhesion molecule 1 expression in endothelial cells more than exogenous native LDL, oxLDL, and oxLDL-negative platelets. Furthermore, oxLDL-laden platelets induced foam cell development from CD34+ progenitor cells. On endothelial regeneration, oxLDL-laden platelets had the opposite effect: The number of CD34+ progenitor cells (colony-forming units) able to transform into endothelial cells was significantly reduced in the presence of oxLDL-platelets, whereas native LDL had no effect. Our results demonstrate that activated platelets internalize oxLDL and that oxLDL-laden platelets activate endothelium, inhibit endothelial regeneration, and promote foam cell development. Platelet oxLDL contributes significantly to vascular inflammation and is able to promote atherosclerosis.

REFERENCES

Stephan LindemannM.D. 

Medizinische Klinik, Abt. III, Kardiologie und Kreislauferkrankungen

Eberhard-Karls-Universität Tübingen, Otfried-Müller-Str.10, D-72076 Tübingen, Germany

eMail: Stephan.lindemann@med.uni-tuebingen.de