Der Nuklearmediziner 2010; 33(2): 105-112
DOI: 10.1055/s-0030-1252026
Myokardszintigrafie – 2010

© Georg Thieme Verlag KG Stuttgart · New York

Diagnostik der koronaren Herzkrankheit – aktueller Stand der CT

Diagnosis of Coronary Artery Disease – Current Status of CTM. H. K. Hoffmann1 , O. Klass1 , H. Brunner1
  • 1Klinik für Diagnostische und Interventionelle Radiologie, Unikliniken Ulm
Further Information

Publication History

Publication Date:
31 May 2010 (online)

Zusammenfassung

Kontinuierliche technische Innovationen der CT-Technologie sorgen in den letzten Jahren für eine immer bessere klinische Einsatzfähigkeit der Modalität. Die 16- und-64-Zeiler-CT-Generation hat die nicht-invasive CT-Koronarangiografie mit hoher Übereinstimmung zur invasiven Katheterangiografie etabliert. Es wurde jedoch berechtigte Kritik zur hohen Röntgendosisexposition geäußert. Das Problem ist derzeit im Fokus der technischen Entwicklung. Durch geschickte Kombination aus modifizierten Rekonstruktionsverfahren und neuer Detektortechnologie lassen sich die erforderlichen Dosisexpositionen um 80% senken. Damit ist die Methode für die klinische Routine einsetzbar. Symptomatische Patienten mit mittlerer Vortestwahrscheinlichkeit für eine KHK sind bereits als geeignet für eine primäre CT-Koronarangiografie identifiziert worden. In einer mittlerweile unüberschaubaren Fülle von Publikationen werden Einsatzgebiete in der Primärdiagnostik der KHK, bei der schnellen Abklärung von Bypassgefäßen und von Koronaranomalien definiert. Weitere Möglichkeiten ergeben sich für den Einsatz bei unklarem Thoraxschmerz und für die simultane Erfassung von Morphologie (Koronararterien) und Funktion (Perfusion). Interessant wird in diesem Zusammenhang die wissenschaftliche Evaluation der rein CT-basierten Perfusionsbildgebung. Möglicherweise ist dann eine weitere Modalität wie das SPECT zur Akquisition von Perfusionsdatensätzen gar nicht erforderlich.

Abstract

Continuous technical innovations during the last years have established cardiac CT as a modality for noninvasive coronary angiography in clinical routine. 64 detector row generations and beyond have shown high diagnostic accuracy for obstructive stenosis detection in comparison to the standard of reference catheterization angiography. But the high radiation dose exposure associated with helical cardiac CT acquisition has sparked increasing concern in the medical community. The issue has been addressed with the newest releases of technology. Dose reduction by 80% and more is achieved with modified scan techniques rendering the method suitable for clinical routine. Symptomatic patients with an intermediate pre-test probability have been identified as the most suitable candidates for CT coronary angiography. Other appropriate indications include the rapid assessment of bypass grafts and suspected coronary anomalies. CT coronary angiography has been shown to be cost effective for the evaluation of patients with acute chest pain in the emergency department. But CT is able to provide more than coronary morphology, initial feasibility testing has shown that CT first-pass myocardial imaging can visualize perfusion defects with adenosine induced vasodilatation. Coronary morphology and functional perfusion studies have been shown to be complementary providing incremental diagnostic value over either technique alone. In the next few years a lot of comparison trials will establish the best suitable perfusion method (SPECT, MRI or CT) for hybrid imaging with CT coronary angiography.

Literatur

  • 1 Abidov A, Gallagher M, Chinnaiyan KM. et al . Clinical effectiveness of coronary computed tomographic angiography in the triage of patients to cardiac catheterization and revascularization after inconclusive stress testing: results of a 2-year prospective trial.  J Nucl Cardiol. 2009;  16 701-713
  • 2 Bastarrika G, Lee YS, Huda W. et al . CT of coronary artery disease.  Radiology.. 2009;  253 317-338
  • 3 Berman DS, Hachamovitch R, Shaw LJ. et al . Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: Noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease.  J Nucl Med. 2006;  47 1107-1118
  • 4 Boden WE, O’Rourke RA, Teo KK. et al . Optimal medical therapy with or without PCI for stable coronary disease.  The New England Journal of Medicine. 2007;  356 1503-1516
  • 5 Brodoefel H, Burgstahler C, Tsiflikas I. et al . Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy.  Radiology. 2008;  247 346-355
  • 6 Cademartiri F, Mollet N, Runza G. et al . Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography.  European Radiology. 2005;  15 1426-1431
  • 7 Carbonaro S, Villines TC, Hausleiter J. et al . International, multidisciplinary update of the 2006 Appropriateness Criteria for cardiac computed tomography.  Journal of cardiovascular computed tomography. 2009;  3 224-232
  • 8 Detrano R, Guerci AD, Carr JJ. et al . Coronary calcium as a predictor of coronary events in four racial or ethnic groups.  N Engl J Med. 2008;  358 1336-1345
  • 9 Dewey M, Hamm B. Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for diagnosis of coronary artery disease.  European Radiology. 2007;  17 1301-1309
  • 10 Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease.  N Engl J Med. 1979;  300 1350-1358
  • 11 Feuerlein S, Roessl E, Proksa R. et al. Multienergy Photon-counting K-edge Imaging: Potential for Improved Luminal Depiction in Vascular Imaging.  Radiology. 2008;  2492080560
  • 12 Flohr TG, McCollough CH, Bruder H. et al . First performance evaluation of a dual-source CT (DSCT) system.  European Radiology. 2006;  16 256-268
  • 13 Gaemperli O, Schepis T, Koepfli P. et al . Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT.  Eur J Nucl Med Mol Imaging. 2007;  34 1162-1171
  • 14 Gaemperli O, Schepis T, Valenta I. et al . Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT.  Radiology. 2008;  248 414-423
  • 15 Gaemperli O, Kaufmann P. Multimodality cardiac imaging.  J Nucl Cardiol. 2009; 
  • 16 Garcia M, Lessick J, Hoffmann MH. Investigators CATSCANS . Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis.  JAMA. 2006;  296 403-411
  • 17 George RT, Jerosch-Herold M, Silva C. et al . Quantification of myocardial perfusion using dynamic 64-detector computed tomography.  Invest Radiol. 2007;  42 815-822
  • 18 George RT, Arbab-Zadeh A, Miller JM. et al . Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia.  Circ Cardiovasc Imaging. 2009;  2 174-182
  • 19 Goldstein J, Gallagher M, O’neill W. et al . A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain.  Journal of the American College of Cardiology. 2007;  49 863-871
  • 20 Halliburton SS, Schoenhagen P, Nair A. et al . Contrast enhancement of coronary atherosclerotic plaque: a high-resolution, multidetector-row computed tomography study of pressure-perfused, human ex-vivo coronary arteries.  Coron Artery Dis.. 2006;  17 553-560
  • 21 Hamon M, Morello R, Riddell J. et al . Coronary arteries: diagnostic performance of 16-versus 64-section spiral CT compared with invasive coronary angiography meta-analysis.  Radiology. 2007;  245 720
  • 22 Hausleiter J, Meyer T, Hermann F. et al . Estimated radiation dose associated with cardiac CT angiography.  JAMA: The Journal of the American Medical Association. 2009;  301 500-507
  • 23 Hendel R, Patel M, Kramer C. et al . ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology.  Journal of the American College of Cardiology. 2006;  48 1475-1497
  • 24 Henneman MM, Schuijf JD, Jukema JW. et al . Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: a comparison with 2D echocardiography.  J Nucl Cardiol. 2006;  13 480-487
  • 25 Higgins CB, Siemers PT, Newell JD. et al . Role of iodinated contrast material in the evaluation of myocardial infarction by computerized transmission tomography.  Investigative Radiology. 1980;  15 S176-S182
  • 26 Hoffmann MH, Shi H, Manzke R. et al . Noninvasive coronary angiography with 16-detector row CT: effect of heart rate.  Radiology. 2005;  234 86-97
  • 27 Hoffmann MH, Shi H, Schmitz BL. et al . Noninvasive coronary angiography with multislice computed tomography.  JAMA. 2005;  293 2471-2478
  • 28 Hoffmann U, Bamberg F, Chae CU. et al . Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial.  Journal of the American College of Cardiology. 2009;  53 1642-1650
  • 29 Hollander JE, Chang AM, Shofer FS. et al . Coronary computed tomographic angiography for rapid discharge of low-risk patients with potential acute coronary syndromes.  Ann Emerg Med. 2009;  53 295-304
  • 30 Husmann L, Gaemperli O, Schepis T. et al . Accuracy of quantitative coronary angiography with computed tomography and its dependency on plaque composition: plaque composition and accuracy of cardiac CT.  Int J Cardiovasc Imaging. 2008;  24 895-904
  • 31 Kamdar AR, Meadows TA, Roselli EE. et al . Multidetector computed tomographic angiography in planning of reoperative cardiothoracic surgery.  Ann Thorac Surg. 2008;  85 1239-1245
  • 32 Klass O, Walker M, Siebach A. et al. Prospectively gated axial CT coronary angiography: comparison of image quality and effective radiation dose between 64- and 256-slice CT.  Eur Radiol.. 2009; 
  • 33 Leber A, Becker A, Knez A. et al . Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system a comparative study using intravascular ultrasound.  Journal of the American College of Cardiology. 2006;  47 672-677
  • 34 Lell M, Hinkmann F, Anders K. et al . High-pitch electrocardiogram-triggered computed tomography of the chest: initial results.  Investigative radiology. 2009;  44 728-733
  • 35 Lipton M, Higgins C, Farmer D. et al . Cardiac imaging with a high-speed cine-CT scanner: preliminary results.  Radiology. 1984;  152 579-582
  • 36 Maintz D, Burg MC, Seifarth H. et al . Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT.  European Radiology. 2009;  19 42-49
  • 37 Meijboom W, Mollet N, van Mieghem CA. et al . Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery.  Journal of the American College of Cardiology. 2006;  48 1658-1665
  • 38 Meijboom WB, van Mieghem CA, Mollet N. et al . 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease.  Journal of the American College of Cardiology. 2007;  50 1469-1475
  • 39 Min JK, Shaw LJ, Berman DS. et al . Costs and clinical outcomes in individuals without known coronary artery disease undergoing coronary computed tomographic angiography from an analysis of Medicare category III transaction codes.  Am J Cardiol. 2008;  102 672-678
  • 40 Nieman K, Oudkerk M, Rensing BJ. et al . Coronary angiography with multi-slice computed tomography.  Lancet. 2001;  357 599-603
  • 41 Nieman K, Shapiro MD, Ferencik M. et al . Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to MR imaging.  Radiology. 2008;  247 49-56
  • 42 Pundziute G, Schuijf J, Jukema J. et al . Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease.  Journal of the American College of Cardiology. 2007;  49 62-70
  • 43 Ruzsics B, Schwarz F, Schoepf UJ. et al . Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply.  Am J Cardiol. 2009;  104 318-326
  • 44 Rybicki FJ, Otero HJ, Steigner ML. et al . Initial evaluation of coronary images from 320-detector row computed tomography.  Int J Cardiovasc Imaging. 2008;  24 535-546
  • 45 Sampson UK, Dorbala S, Limaye A. et al . Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease.  Journal of the American College of Cardiology. 2007;  49 1052-1058
  • 46 Serruys PW, Morice MC, Kappetein AP. et al . Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease.  The New England Journal of Medicine. 2009;  360 961-972
  • 47 Soon KH, Cox N, Wong A. et al . CT coronary angiography predicts the outcome of percutaneous coronary intervention of chronic total occlusion.  J Interv Cardiol. 2007;  20 359-366
  • 48 Sun J, Zhang Z, Lu B. et al . Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound.  American Journal of Roentgenology. 2008;  190 748-754
  • 49 Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R. et al . Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis.  Radiology. 2007;  244 419-428
  • 50 Weustink AC, Nieman K, Pugliese F. et al . Diagnostic accuracy of computed tomography angiography in patients after bypass grafting: comparison with invasive coronary angiography.  JACC Cardiovasc Imaging. 2009;  2 816-824
  • 51 Ziegler A, Nielsen T, Grass M. Iterative reconstruction of a region of interest for transmission tomography.  Med Phys. 2008;  35 1317

Korrespondenzadresse

Prof. Dr. Martin H. K. Hoffmann

Klinik für Diagnostische und

Interventionelle Radiologie

Unikliniken Ulm

Standort Safranberg

Steinhoevelstraße 9

89075 Ulm

Phone: +49/731/500 61003

Fax: +49/731/500 61002

Email: martin.hoffmann@uniklinik-ulm.de