Handchir Mikrochir Plast Chir 2010; 42(6): 337-341
DOI: 10.1055/s-0030-1252045
Übersichtsarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Tissue Engineering der Leber

Hepatic Tissue EngineeringH. C. Fiegel1 , U. Kneser2 , D. Kluth3 , U. Rolle1
  • 1Goethe Universität Frankfurt, Kinderchirurgie, Frankfurt
  • 2Universität Erlangen, Hand- und Plastische Chirurgie, Erlangen
  • 3Universität Leipzig, Kinderchirurgie, Leipzig
Weitere Informationen

Publikationsverlauf

eingereicht 30.10.2009

akzeptiert 15.3.2010

Publikationsdatum:
19. April 2010 (online)

Zusammenfassung

Lebertransplantation ist bisher die einzige kurative Behandlungsmöglichkeit für Leberversagen im Endstadium. Limitierung der Lebertransplantation ist vor allem der Spenderorganmangel. Deshalb werden zellbasierte Behandlungsmöglichkeiten für bestimmte Lebererkrankungen derzeit intensiv beforscht. Prinzip des Tissue Engineering ist die Idee einer Wechselwirkung zwischen Zellen und einer dreidimensionalen Trägerstruktur (Matrix). Dabei bewirkt die Matrix durch eine dreidimensionale Orientierung der Zellen sowie eine gezielte Zell-Matrix Interaktion eine gezielte Stimulation von Wachstum und Differenzierung. In Hepatozytenkulturen konnte eine deutliche Steigerung des Zellanwachsens und des Zellüberlebens durch den Einsatz von dreidimensionalen Trägermaterialien und Bioreaktorsystemen gezeigt werden. Es zeigte sich auch eine deutlich gesteigerte Synthese- und Entgiftungsleistung der kultivierten Hepatozyten. Im Tiermodell wurde ein Modell der heterotopen Hepatozytentransplantation unter Nutzung dreidimensionaler Matrizes etabliert. In einem solchen Transplantationsmodell gelang der Nachweis eines Langzeitüberlebens und -funktion der transplantierten Hepatozyten. Limitierung war das unzureichende initiale Engraftment. Damit zeigt die Anwendung des Tissue Engineerings für die Leber vielversprechende Ergebnisse auf, um eine Weiterentwicklung zellbasierter Therapieformen für Lebererkrankungen zu ermöglichen. Lösungen für die Probleme einer adäquaten initialen Gefäßversorgung der transplantierten Zellen sowie der Formierung von Gallenwegen bedürfen zukünftiger Forschung, um das Tissue Engineering der Leber näher an einen klinischen Einsatz heranbringen zu können.

Abstract

Today liver transplantation is the only curative option for the treatment of end-stage liver diseases. A major limitation of liver transplantation is the donor organ shortage. Therefore, tissue engineering based cell transplantation is currently under investigation with the aim to replace liver tissue and function. The principle of tissue engineering is the notion of an interaction between a cell and a three-dimensional matrix. The matrix serves as a scaffold and guides a three-dimensional cell assembly. In addition, the matrix provides for a regulation of cell proliferation and function by cell-matrix interactions. In cultures of hepatocytes a regulation of cell proliferation and specific function by using three-dimensional matrices and by modifying the surface with isolated molecules of the extracellular matrix has been demonstrated. Furthermore, a beneficial effect of a flow bioreactor system on cell viability and function was observed. In addition, a system for heterotopic hepatocyte transplantation on polymeric matrices was developed in an animal model. In this transplantation model a long-term proliferation and function of transplanted hepatocytes was shown. The major limitation of matrix-based transplantation systems is the high initial cell loss, most probably due to an insufficient vascularisation. Thus, the development of vascularised matrices and the creation of bile ducts remain major problems in the technologies of hepatic tissue engineering and have to be addressed to enable further advances towards clinical applications.

Literatur

  • 1 Feng S, Si M, Taranto SE. et al . Trends over a decade of pediatric liver transplantation in the United States.  Liver Transplant. 2006;  12 578-584
  • 2 Raper SE. Hepatocyte transplantation and gene therapy.  Clin Transplant. 1995;  9 249-254
  • 3 Tiao GM, Alonso MH, Ryckman FC. Pediatric liver transplantation.  Sem Ped Surg. 2006;  15 218-227
  • 4 Asonuma K, Gilbert JC, Stein JE. et al . Quantitation of transplanted hepatic mass necessary to cure the gunn rat model of hyperbilirubinemia.  J Pediatr Surg. 1992;  27 298-301
  • 5 Malhi H, Gupta S. Hepatocyte transplantation: new horizons and challenges.  J Hepatobiliary Pancreat Surg. 2001;  8 40-50
  • 6 Anderson NG. The mass isolation of whole cells from rat liver.  Science. 1953;  117 627-628
  • 7 Berry MN, Friend DS. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study.  J Cell Biol. 1969;  43 506-520
  • 8 Seglen PO, Jervell KF. A simple perfusion technique applied to glucocorticoid regulation of tryptophan oxygenase turnover and bile production in the isolated rat liver.  Hoppe Seylers Z Physiol Chem. 1969;  350 308-316
  • 9 Kaufmann PM, Sano K, Uyama S. et al . Heterotopic hepatocyte transplantation using three dimensional polymers: evaluation of the stimulatory effects by portocaval shunt or islet cell cotransplantation.  Transplant Proc. 1996;  26 3343-3345
  • 10 Mooney D, Hansen L, Vacanti J. et al . Switching from differentiation to growth in hepatocytes: Control by extracellular matrix.  J Cell Physiol. 1992;  151 497-505
  • 11 Berthiaume F, Moghe PV, Toner M. et al . Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration.  FASEB J. 1996;  10 1471-1484
  • 12 Block GD, Locker J, Bowen WC. et al . Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/Sf, EGF and TGF alpha in a chemically defined (HGM) medium.  J Cell Biol. 1996;  132 1133-1149
  • 13 Reid LM. Stem cell biology, hormone/matrix synergies and liver differentiation.  Curr Opin Cell Biol. 1990;  2 121-130
  • 14 Guguen-Guillouzo C, Clément B, Baffet G. et al . Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type.  Exp Cell Res. 1983;  143 47-54
  • 15 Shimaoka S, Nakamura T, Ichihara A. Stimulation of growth of primary cultured adult rat hepatocytes without growth factors by coculture with nonparenchymal liver cells.  Exp Cell Res. 1987;  172 228-242
  • 16 Bhatia SN, Balis UJ, Yarmush ML. et al . Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells.  FASEB J. 1999;  13 1883-1900
  • 17 Golinski PA, Zöller N, Kippenberger S. et al . Development of an engraftable skin equivalent based on Matriderm with human keratinocytes and fibroblasts.  Handchir Mikrochir Plast Chir. 2009;  41 327-332
  • 18 Mooney DJ, Park S, Kaufmann PM. et al . Biodegradable sponges for hepatocyte transplantation.  J Biomed Mater Res. 1995;  29 959-965
  • 19 Kaufmann PM, Heimrath S, Kim BD. et al . Highly porous polymer matrices as three dimensional culture system for hepatocytes.  Cell Transplant. 1997;  6 463-468
  • 20 Lee H, Cusick RA, Browne F. et al . Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices.  Transplantation. 2002;  73 1589-1593
  • 21 Rozga J, Williams F, Ro MS. et al . Development of a bioartificial liver: properties and function of a hollow-fiber module inoculated with liver cells.  Hepatology. 1993;  17 258-265
  • 22 Fiegel HC, Havers J, Kneser U. et al . Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes.  Tissue Eng. 2004;  10 165-174
  • 23 Pearse MJ, Witort E, Mottram P. et al . Anti-gal antibody-mediated allograft rejection in alpha1,3-galactosyltransferase gene knockout mice: a model of delayed xenograft rejection.  Transplantation. 1998;  66 748-754
  • 24 Obermayer N, Busse B, Grünwald A. et al . Biochemical characterization of bioreactors for hybrid liver support: serum-free liver cell coculture of nonparenchymal and parenchymal cells.  Transplant Proc. 2001;  33 1930-1931
  • 25 Bartolo LD, Bader A. Flat membrane bioreactor for the replacement of liver functions.  Ernst Schering Res Found Workshop. 2002;  35 89-104
  • 26 Yanagi K, Ookawa K, Mizuno S. et al . Performance of a new hybrid artificial liver support system using hepatocytes entrapped within a hydrogel.  ASAIO Trans. 1989;  35 570-572
  • 27 Doré E, Legallais C. A new concept of bioartificial liver based on a fluidized bed bioreactor.  Ther Apher. 1999;  3 264-267
  • 28 Kneser U, Kaufmann PM, Fiegel HC. et al . Heterotopic hepatocyte transplantation utilizing pancreatic islet cotransplantation for hepatotrophic stimulation: morphologic and morphometric evaluation.  Pediatr Surg Int. 1999;  15 168-174
  • 29 Fiegel HC, Kaufmann PM, Bruns H. et al . Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory.  J Cell Mol Med. 2008;  12 56-66
  • 30 Kedem A, Perets A, Gambieli-Bonsthein I. et al . Vascular endothelial growth factor-releasing scaffolds enhance vascularization and engraftment of hepatocytes transplanted on liver lobes.  Tissue Eng. 2005;  11 715-722

Korrespondenzadresse

Dr. Henning C. Fiegel

Goethe Universität Frankfurt

Kinderchirurgie

Theodor-Stern-Kai 7

D-60590 Frankfurt

eMail: henning.fiegel@kgu.de