Semin Musculoskelet Radiol 2010; 14(2): 257-268
DOI: 10.1055/s-0030-1253166
© Thieme Medical Publishers

Advanced MR Imaging Techniques for Skeletal Muscle Evaluation

Michael D. Noseworthy1 , 2 , 3 , 4 , 5 , Andrew D. Davis2 , 3 , 5 , Alyaa H. Elzibak2 , 3 , 5
  • 1Electrical and Computer Engineering, and School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
  • 2Imaging Research Centre, Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
  • 3Diagnostic Imaging, St. Joseph's Healthcare, Hamilton, Ontario, Canada
  • 4Department of Radiology, McMaster University, Hamilton, Ontario, Canada
  • 5Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
Further Information

Publication History

Publication Date:
18 May 2010 (online)

ABSTRACT

Diagnostic imaging procedures for muscle evaluation have typically provided basic information concerning gross anatomical change resulting from pathology. Up until recently the musculoskeletal radiologist has been fairly limited to using simple proton-density weighted fat-saturated and short tau inversion recovery magnetic resonance imaging scans for assessment of skeletal muscle. Recent advances, however, have resulted in development of newer scans and postprocessing methods that provide much more than gross muscle structure. Scans providing fine structure, muscle function, and metabolism can easily be done using clinical scanners. Here we describe how diffusion tensor imaging (DTI) and blood oxygenation level-dependent (BOLD) imaging together can provide detailed information on muscle structural and functional changes. DTI is useful for visualizing muscle tears, and BOLD can be used for vascular insufficiency (e.g., compartment syndrome). In clinical sites that are gaining experience using these techniques, imaging of muscle pathology is becoming increasingly thorough. In the future, these methods will reduce the need for invasive approaches to study muscle pathology.

REFERENCES

  • 1 Arnold D L, Matthews P M, Radda G K. Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR.  Magn Reson Med. 1984;  1(3) 307-315
  • 2 Boesch C, Machann J, Vermathen P, Schick F. Role of proton MR for the study of muscle lipid metabolism.  NMR Biomed. 2006;  19(7) 968-988
  • 3 Wells G D, Noseworthy M D, Hamilton J, Tarnopolski M, Tein I. Skeletal muscle metabolic dysfunction in obesity and metabolic syndrome.  Can J Neurol Sci. 2008;  35(1) 31-40
  • 4 Stejskal E O, Tanner J E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient.  J Chem Phys. 1965;  42 288-292
  • 5 Wesbey G E, Moseley M E, Ehman R L. Translational molecular self-diffusion in magnetic resonance imaging. I. Effects on observed spin-spin relaxation.  Invest Radiol. 1984;  19(6) 484-490
  • 6 Wesbey G E, Moseley M E, Ehman R L. Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient.  Invest Radiol. 1984;  19(6) 491-498
  • 7 Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.  Radiology. 1986;  161(2) 401-407
  • 8 Bells S, Noseworthy M D. Effects of Gd bolus on DTI measurements in skeletal muscle. Paper presented at: International Society for Magnetic Resonance in Medicine (ISMRM) May 2006 Seattle WA;
  • 9 Saupe N, White L M, Stainsby J, Tomlinson G, Sussman M S. Diffusion tensor imaging and fiber tractography of skeletal muscle: optimization of B value for imaging at 1.5 T.  AJR Am J Roentgenol. 2009;  192(6) W282–290
  • 10 Saupe N, White L M, Sussman M S, Kassner A, Tomlinson G, Noseworthy M D. Diffusion tensor magnetic resonance imaging of the human calf: comparison between 1.5 T and 3.0 T—preliminary results.  Invest Radiol. 2008;  43(9) 612-618
  • 11 Galbán C J, Maderwald S, Uffmann K, de Greiff A, Ladd M E. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf.  Eur J Appl Physiol. 2004;  93(3) 253-262
  • 12 Zaraiskaya T, Kumbhare D, Noseworthy M D. Diffusion tensor imaging in evaluation of human skeletal muscle injury.  J Magn Reson Imaging. 2006;  24(2) 402-408
  • 13 Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain.  Magn Reson Med. 1999;  42(3) 526-540
  • 14 Le Bihan D, Mangin J F, Poupon C et al.. Diffusion tensor imaging: concepts and applications.  J Magn Reson Imaging. 2001;  13(4) 534-546
  • 15 Bammer R, Acar B, Moseley M E. In vivo MR tractography using diffusion imaging.  Eur J Radiol. 2003;  45(3) 223-234
  • 16 Lori N F, Akbudak E, Shimony J S et al.. Diffusion tensor fiber tracking of human brain connectivity: acquisition methods, reliability analysis and biological results.  NMR Biomed. 2002;  15(7-8) 494-515
  • 17 Damon B M, Ding Z, Anderson A W, Freyer A S, Gore J C. Validation of diffusion tensor MRI-based muscle fiber tracking.  Magn Reson Med. 2002;  48(1) 97-104
  • 18 Lansdown D A, Ding Z, Wadington M, Hornberger J L, Damon B M. Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle.  J Appl Physiol. 2007;  103(2) 673-681
  • 19 Gaige T A, Benner T, Wang R, Wedeen V J, Gilbert R J. Three dimensional myoarchitecture of the human tongue determined in vivo by diffusion tensor imaging with tractography.  J Magn Reson Imaging. 2007;  26(3) 654-661
  • 20 Jiang H, van Zijl P C, Kim J, Pearlson G D, Mori S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking.  Comput Methods Programs Biomed. 2006;  81(2) 106-116
  • 21 Cox R W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.  Comput Biomed Res. 1996;  29(3) 162-173
  • 22 Smith S M, Jenkinson M, Woolrich M W et al.. Advances in functional and structural MR image analysis and implementation as FSL.  Neuroimage. 2004;  23(suppl 1) S208-S219
  • 23 Wang R, Wedeen V J. Diffusion Toolkit and TrackVis. Berlin, Germany, Proc Intl Soc Mag Reson Med 2007 Available at http://www.trackvis.org Martinos Center for Biomedical Imaging, Massachusetts General Hospital;
  • 24 Sherbondy A, Akers D, Mackenzie R, Dougherty R, Wandell B. Exploring connectivity of the brain's white matter with dynamic queries.  IEEE Trans Vis Comput Graph. 2005;  11(4) 419-430
  • 25 Papademetris X, Jackowski M, Rajeevan N et al.. Bioimage suite: an integrated medical image analysis suite. The Insight Journal. Available at: http://hdl.handle.net/1926/37,2005
  • 26 Ogawa S, Lee T M, Nayak A S, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields.  Magn Reson Med. 1990;  14(1) 68-78
  • 27 Lebon V, Carlier P G, Brillault-Salvat C, Leroy-Willig A. Simultaneous measurement of perfusion and oxygenation changes using a multiple gradient-echo sequence: application to human muscle study.  Magn Reson Imaging. 1998;  16(7) 721-729
  • 28 Lebon V, Brillault-Salvat C, Bloch G, Leroy-Willig A, Carlier P G. Evidence of muscle BOLD effect revealed by simultaneous interleaved gradient-echo NMRI and myoglobin NMRS during leg ischemia.  Magn Reson Med. 1998;  40(4) 551-558
  • 29 Ledermann H P, Heidecker H G, Schulte A C et al.. Calf muscles imaged at BOLD MR: correlation with TcPO2 and flowmetry measurements during ischemia and reactive hyperemia—initial experience.  Radiology. 2006;  241(2) 477-484
  • 30 Ledermann H P, Schulte A C, Heidecker H G et al.. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease.  Circulation. 2006;  113(25) 2929-2935
  • 31 Schulte A C, Aschwanden M, Bilecen D. Calf muscles at blood oxygen level-dependent MR imaging: aging effects at postocclusive reactive hyperemia.  Radiology. 2008;  247(2) 482-489
  • 32 Duteil S, Wary C, Raynaud J S et al.. Influence of vascular filling and perfusion on BOLD contrast during reactive hyperemia in human skeletal muscle.  Magn Reson Med. 2006;  55(2) 450-454
  • 33 Noseworthy M D, Bulte D P, Alfonsi J. BOLD magnetic resonance imaging of skeletal muscle.  Semin Musculoskelet Radiol. 2003;  7(4) 307-315
  • 34 Bulte D P, Alfonsi J, Bells S, Noseworthy M D. Vasomodulation of skeletal muscle BOLD signal.  J Magn Reson Imaging. 2006;  24(4) 886-890
  • 35 Bulte D P, Bells S, Noseworthy M D. (2004) Nicotine induced changes in muscle BOLD signal at 3T. Paper presented at: International Society for Magnetic Resonance in Medicine (ISMRM) May 2004 Kyoto, Japan;
  • 36 Meyer R A, Towse T F, Reid R W, Jayaraman R C, Wiseman R W, McCully K K. BOLD MRI mapping of transient hyperemia in skeletal muscle after single contractions.  NMR Biomed. 2004;  17(6) 392-398
  • 37 Wigmore D M, Damon B M, Pober D M, Kent-Braun J A. MRI measures of perfusion-related changes in human skeletal muscle during progressive contractions.  J Appl Physiol. 2004;  97(6) 2385-2394
  • 38 Towse T F, Slade J M, Meyer R A. Effect of physical activity on MRI-measured blood oxygen level-dependent transients in skeletal muscle after brief contractions.  J Appl Physiol. 2005;  99(2) 715-722
  • 39 Damon B M, Hornberger J L, Wadington M C, Lansdown D A, Kent-Braun J A. Dual gradient-echo MRI of post-contraction changes in skeletal muscle blood volume and oxygenation.  Magn Reson Med. 2007;  57(4) 670-679
  • 40 Towse T F, Slade J M, Ambrose J A, DeLano M C, Ronald R A. Quantitative analysis of the post-contractile BOLD effect in human skeletal muscle. Paper presented at: International Society for magnetic Resonance in Medicine (ISMRM) April 2009 Honolulu, HI;
  • 41 Davis A D, Falk B, Noseworthy M D. Comparison of EPI and two-shot spiral in/out for muscle BOLD imaging during exercise.  Magma. 2009;  22(suppl 1) 241-242
  • 42 Raymer G H, Allman B L, Rice C L, Marsh G D, Thompson R T. Characteristics of a MR-compatible ankle exercise ergometer for a 3.0 T head-only MR scanner.  Med Eng Phys. 2006;  28(5) 489-494
  • 43 Isbell D C, Epstein F H, Zhong X et al.. Calf muscle perfusion at peak exercise in peripheral arterial disease: measurement by first-pass contrast-enhanced magnetic resonance imaging.  J Magn Reson Imaging. 2007;  25(5) 1013-1020
  • 44 Toussaint J F, Kwong K K, Mkparu F O et al.. Perfusion changes in human skeletal muscle during reactive hyperemia measured by echo-planar imaging.  Magn Reson Med. 1996;  35(1) 62-69
  • 45 Donahue K M, Van Kylen J, Guven S et al.. Simultaneous gradient-echo/spin-echo EPI of graded ischemia in human skeletal muscle.  J Magn Reson Imaging. 1998;  8(5) 1106-1113
  • 46 Jordan B F, Kimpalou J Z, Beghein N, Dessy C, Feron O, Gallez B. Contribution of oxygenation to BOLD contrast in exercising muscle.  Magn Reson Med. 2004;  52(2) 391-396
  • 47 Tschakovsky M E, Joyner M J. Nitric oxide and muscle blood flow in exercise.  Appl Physiol Nutr Metab. 2008;  33(1) 151-161
  • 48 Rowell L B. Ideas about control of skeletal and cardiac muscle blood flow (1876-2003): cycles of revision and new vision.  J Appl Physiol. 2004;  97(1) 384-392
  • 49 McFadden D, Burr J, Cormier T et al.. Muscle blood-oxygen level dependent (BOLD) imaging: a potential tool to evaluate chronic compartment syndrome. Paper presented at: International Society for Magnetic Resonance Technologists (SMRT) April 2007 Berlin, Germany;
  • 50 Wardlaw G, Wong R, Noseworthy M D. Identification of intratumour low frequency microvascular components via BOLD signal fractal dimension mapping.  Phys Med. 2008;  24(2) 87-91
  • 51 Biswal B, DeYoe A E, Hyde J S. Reduction of physiological fluctuations in fMRI using digital filters.  Magn Reson Med. 1996;  35(1) 107-113
  • 52 Biswal B, Hudetz A G, Yetkin F Z, Haughton V M, Hyde J S. Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI.  J Cereb Blood Flow Metab. 1997;  17(3) 301-308
  • 53 Baudelet C, Ansiaux R, Jordan B F, Havaux X, Macq B, Gallez B. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia?.  Phys Med Biol. 2004;  49(15) 3389-3411
  • 54 Baudelet C, Cron G O, Ansiaux R et al.. The role of vessel maturation and vessel functionality in spontaneous fluctuations of T2*-weighted GRE signal within tumors.  NMR Biomed. 2006;  19(1) 69-76
  • 55 Braun R D, Lanzen J L, Dewhirst M W. Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats.  Am J Physiol. 1999;  277(2 Pt 2) H551-H568
  • 56 Wardlaw G, Noseworthy M D. Method and system for imaging muscle tissue.  Patent pending.
  • 57 Hoult D I, Busby S JW, Gadian D G, Radda G K, Richards R E, Seeley P J. Observation of tissue metabolites using 31P nuclear magnetic resonance.  Nature. 1974;  252(5481) 285-287
  • 58 Taylor D J. Clinical utility of muscle MR spectroscopy.  Semin Musculoskelet Radiol. 2000;  4(4) 481-502
  • 59 Mattei J P, Bendahan D, Cozzone P. P-31 magnetic resonance spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases.  Reumatismo. 2004;  56(1) 9-14
  • 60 Weber M A, Nielles-Vallespin S, Essig M, Jurkat-Rott K, Kauczor H U, Lehmann-Horn F. Muscle Na+ channelopathies: MRI detects intracellular 23Na accumulation during episodic weakness.  Neurology. 2006;  67(7) 1151-1158
  • 61 Nielles-Vallespin S, Weber M A, Bock M et al.. 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle.  Magn Reson Med. 2007;  57(1) 74-81
  • 62 Hilal S K, Maudsley A A, Ra J B et al.. In vivo NMR imaging of sodium-23 in the human head.  J Comput Assist Tomogr. 1985;  9(1) 1-7
  • 63 Granot J. Sodium imaging of human body organs and extremities in vivo.  Radiology. 1988;  167(2) 547-550
  • 64 Maudsley A A, Hilal S K. Biological aspects of sodium-23 imaging.  Br Med Bull. 1984;  40(2) 165-166
  • 65 Constantinides C D, Gillen J, Boada F, Bottomley P A. 23Na imaging and quantification of skeletal muscle at 1.5T. Paper presented at: International Society for magnetic Resonance in Medicine (ISMRM) May 1999 Denver CO;
  • 66 Constantinides C D, Gillen J S, Boada F E, Pomper M G, Bottomley P A. Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease.  Radiology. 2000;  216(2) 559-568
  • 67 Bansal N, Szczepaniak L, Ternullo D, Fleckenstein J L, Malloy C R. Effect of exercise on (23)Na MRI and relaxation characteristics of the human calf muscle.  J Magn Reson Imaging. 2000;  11(5) 532-538
  • 68 Kushnir T, Knubovets T, Itzchak Y et al.. In vivo 23Na NMR studies of myotonic dystrophy.  Magn Reson Med. 1997;  37(2) 192-196
  • 69 Weber M A, Nielles-Vallespin S, Huttner H B et al.. Evaluation of patients with paramyotonia at 23Na MR imaging during cold-induced weakness.  Radiology. 2006;  240(2) 489-500

Michael D NoseworthyPh.D. 

Imaging Research Centre, Brain-Body Institute, St. Joseph's Healthcare

50 Charlton Ave. East, Hamilton, Ontario L8N 4A6 Canada

Email: nosewor@mcmaster.ca