ABSTRACT
Progressive familial intrahepatic cholestasis type 1 is a rare genetic liver disease that presents in the first year of life. Bile salts are elevated and these patients are often jaundiced. Despite the cholestasis, serum gamma-glutamyltransferase activity is normal or reduced. Pruritus is a major symptom in these patients. Partial external biliary diversion is helpful in several patients as it reduces the pruritus and postpones or even avoids liver transplantation. The disease is caused by mutations in the gene ATP8B1 that preclude the normal expression of ATP8B1 . ATP8B1 is a protein that acts as a lipid flippase, transporting phosphatidylserine from the exoplasmic to the cytoplasmic leaflet of the canalicular membrane of hepatocytes. The authors have shown that the canalicular membrane of ATP8B1-deficient hepatocytes is less stable as evidenced by enhanced extraction of membrane constituents by bile salts. Recent evidence suggests membrane instability in ATP8B1-deficient hair cells of the ear, providing an explanation for hearing loss in ATP8B1 deficiency. Although the exact etiology of cholestasis is incompletely understood, it is hypothesized that ATP8B1 deficiency results in enhanced cholesterol extraction from the canalicular membrane, which impairs the function of the bile salt export pump (BSEP), resulting in cholestasis. Mutations in ATP8B1 also cause benign recurrent intrahepatic cholestasis, a milder variant of the disease characterized by episodes of cholestasis. The onset and resolution of the cholestatic episodes in these patients is still not well understood.
KEYWORDS
Progressive familial intrahepatic cholestasis - benign recurrent intrahepatic cholestasis - intrahepatic cholestasis of pregnancy - partial external biliary diversion -
ATP8B1
- bile salt export pump - farnesoid X-receptor
REFERENCES
1
Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E.
Progressive familial intrahepatic cholestasis.
Orphanet J Rare Dis.
2009;
4
1
2
Bull L N, van Eijk M J, Pawlikowska L et al..
A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis.
Nat Genet.
1998;
18(3)
219-224
3
Bull L N, Juijn J A, Liao M et al..
Fine-resolution mapping by haplotype evaluation: the examples of PFIC1 and BRIC.
Hum Genet.
1999;
104(3)
241-248
4
Klomp L W, Bull L N, Knisely A S et al..
A missense mutation in FIC1 is associated with greenland familial cholestasis.
Hepatology.
2000;
32(6)
1337-1341
5
Eppens E F, van Mil S W, de Vree J M et al..
FIC1, the protein affected in two forms of hereditary cholestasis, is localized in the cholangiocyte and the canalicular membrane of the hepatocyte.
J Hepatol.
2001;
35(4)
436-443
6
van Mil S W, van Oort M M, van den Berg I E, Berger R, Houwen R H, Klomp L W.
FIC1 is expressed at apical membranes of different epithelial cells in the digestive tract and is induced in the small intestine during postnatal development of mice.
Pediatr Res.
2004;
56(6)
981-987
7
Klomp L W, Vargas J C, van Mil S W et al..
Characterization of mutations in ATP8B1 associated with hereditary cholestasis.
Hepatology.
2004;
40(1)
27-38
8
Oshima T, Ikeda K, Takasaka T.
Sensorineural hearing loss associated with Byler disease.
Tohoku J Exp Med.
1999;
187(1)
83-88
9
Bull L N, Carlton V E, Stricker N L et al..
Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): evidence for heterogeneity.
Hepatology.
1997;
26(1)
155-164
10
Bustorff-Silva J, Sbraggia Neto L, Olímpio H et al..
Partial internal biliary diversion through a cholecystojejunocolonic anastomosis—a novel surgical approach for patients with progressive familial intrahepatic cholestasis: a preliminary report.
J Pediatr Surg.
2007;
42(8)
1337-1340
11
Egawa H, Yorifuji T, Sumazaki R, Kimura A, Hasegawa M, Tanaka K.
Intractable diarrhea after liver transplantation for Byler's disease: successful treatment with bile adsorptive resin.
Liver Transpl.
2002;
8(8)
714-716
12
Tygstrup N, Steig B A, Juijn J A, Bull L N, Houwen R H.
Recurrent familial intrahepatic cholestasis in the Faeroe Islands. Phenotypic heterogeneity but genetic homogeneity.
Hepatology.
1999;
29(2)
506-508
13
Lykavieris P, van Mil S, Cresteil D et al..
Progressive familial intrahepatic cholestasis type 1 and extrahepatic features: no catch-up of stature growth, exacerbation of diarrhea, and appearance of liver steatosis after liver transplantation.
J Hepatol.
2003;
39(3)
447-452
14
Miyagawa-Hayashino A, Egawa H, Yorifuji T et al..
Allograft steatohepatitis in progressive familial intrahepatic cholestasis type 1 after living donor liver transplantation.
Liver Transpl.
2009;
15(6)
610-618
15
van Berge Henegouwen G P, Brandt K H, de Pagter A G.
Is an acute disturbance in hepatic transport of bile-acids the primary cause of cholestasis in benign recurrent intrahepatic cholestasis?.
Lancet.
1974;
1(7869)
1249-1251
16
Schmeisser W, Eggstein M, Maulbetsch R, Dölle W.
[A case of benign recurring intrahepatic cholestasis (Tygstrup-Summerskill and Walshe syndrome)].
Schweiz Med Wochenschr.
1977;
107(45)
1613-1620
17
Stapelbroek J M, van Erpecum K J, Klomp L W et al..
Nasobiliary drainage induces long-lasting remission in benign recurrent intrahepatic cholestasis.
Hepatology.
2006;
43(1)
51-53
18
de Pagter A G, van Berge Henegouwen G P, ten Bokkel Huinink J A, Brandt K H.
Familial benign recurrent intrahepatic cholestasis. Interrelation with intrahepatic cholestasis of pregnancy and from oral contraceptives?.
Gastroenterology.
1976;
71(2)
202-207
19
Müllenbach R, Bennett A, Tetlow N et al..
ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy.
Gut.
2005;
54(6)
829-834
20
Folmer D E, Elferink R P, Paulusma C C.
P4 ATPases - lipid flippases and their role in disease.
Biochim Biophys Acta.
2009;
1791(7)
628-635
21
Holthuis J C, Levine T P.
Lipid traffic: floppy drives and a superhighway.
Nat Rev Mol Cell Biol.
2005;
6(3)
209-220
22
Zachowski A.
Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement.
Biochem J.
1993;
294(Pt 1)
1-14
23
Devaux P F, López-Montero I, Bryde S.
Proteins involved in lipid translocation in eukaryotic cells.
Chem Phys Lipids.
2006;
141(1-2)
119-132
24
Paulusma C C, Oude Elferink R P.
Diseases of intramembranous lipid transport.
FEBS Lett.
2006;
580(23)
5500-5509
25
Ujhazy P, Ortiz D, Misra S et al..
Familial intrahepatic cholestasis 1: studies of localization and function.
Hepatology.
2001;
34(4 Pt 1)
768-775
26
Paulusma C C, Folmer D E, Ho-Mok K S et al..
ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity.
Hepatology.
2008;
47(1)
268-278
27
Cai S Y, Gautam S, Nguyen T, Soroka C J, Rahner C, Boyer J L.
ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained.
Gastroenterology.
2009;
136(3)
1060-1069
28
Nibbering C P, Groen A K, Ottenhoff R, Brouwers J F, vanBerge-Henegouwen G P, van Erpecum K J.
Regulation of biliary cholesterol secretion is independent of hepatocyte canalicular membrane lipid composition: a study in the diosgenin-fed rat model.
J Hepatol.
2001;
35(2)
164-169
29
Amigo L, Mendoza H, Zanlungo S et al..
Enrichment of canalicular membrane with cholesterol and sphingomyelin prevents bile salt-induced hepatic damage.
J Lipid Res.
1999;
40(3)
533-542
30
Oude Elferink R PJ, Paulusma C C, Groen A K.
Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases.
Gastroenterology.
2006;
130(3)
908-925
31
Pawlikowska L, Groen A, Eppens E F et al..
A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion.
Hum Mol Genet.
2004;
13(8)
881-892
32
Paulusma C C, Groen A, Kunne C et al..
ATP8B1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport.
Hepatology.
2006;
44(1)
195-204
33
Groen A, Kunne C, Jongsma G et al..
ABCG5/8 independent biliary cholesterol excretion in ATP8B1-deficient mice.
Gastroenterology.
2008;
134(7)
2091-2100
34
Paulusma C C, de Waart D R, Kunne C, Mok K S, Elferink R P.
Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content.
J Biol Chem.
2009;
284(15)
9947-9954
35
Alvarez L, Jara P, Sánchez-Sabaté E et al..
Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1.
Hum Mol Genet.
2004;
13(20)
2451-2460
36
Chen F, Ananthanarayanan M, Emre S et al..
Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity.
Gastroenterology.
2004;
126(3)
756-764
37
Chen F, Ellis E, Strom S C, Shneider B L.
ATPase class I type 8B member 1 and protein kinase C zeta induce the expression of the canalicular bile salt export pump in human hepatocytes.
Pediatr Res.
2010;
67(2)
183-187
38
Frankenberg T, Miloh T, Chen F Y et al..
The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor.
Hepatology.
2008;
48(6)
1896-1905
39
Koh S, Takada T, Kukuu I, Suzuki H.
FIC1-mediated stimulation of FXR activity is decreased with PFIC1 mutations in HepG2 cells.
J Gastroenterol.
2009;
44(6)
592-600
40
Martínez-Fernández P, Hierro L, Jara P, Alvarez L.
Knockdown of ATP8B1 expression leads to specific downregulation of the bile acid sensor FXR in HepG2 cells: effect of the FXR agonist GW4064.
Am J Physiol Gastrointest Liver Physiol.
2009;
296(5)
G1119-G1129
41
Demeilliers C, Jacquemin E, Barbu V et al..
Altered hepatobiliary gene expressions in PFIC1: ATP8B1 gene defect is associated with CFTR downregulation.
Hepatology.
2006;
43(5)
1125-1134
42
Inagaki T, Choi M, Moschetta A et al..
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis.
Cell Metab.
2005;
2(4)
217-225
43
Folmer D E, van der Mark V A, Ho-Mok K S, Oude Elferink R P, Paulusma C C.
Differential effects of progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1 mutations on canalicular localization of ATP8B1.
Hepatology.
2009;
50(5)
1597-1605
44
van der Velden L M, Stapelbroek J M, Krieger E et al..
Folding defects in P-type ATP 8B1 associated with hereditary cholestasis are ameliorated by 4-phenylbutyrate.
Hepatology.
2010;
51(1)
286-296
45
Elferink M G, Olinga P, Draaisma A L et al..
LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process.
Am J Physiol Gastrointest Liver Physiol.
2004;
287(5)
G1008-G1016
46
Geier A, Dietrich C G, Voigt S et al..
Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver.
Am J Physiol Gastrointest Liver Physiol.
2005;
289(5)
G831-G841
47
Siewert E, Dietrich C G, Lammert F et al..
Interleukin-6 regulates hepatic transporters during acute-phase response.
Biochem Biophys Res Commun.
2004;
322(1)
232-238
48
Stapelbroek J M, Peters T A, van Beurden D H et al..
ATP8B1 is essential for maintaining normal hearing.
Proc Natl Acad Sci U S A.
2009;
106(24)
9709-9714
Peter L.M JansenM.D. Ph.D.
Department of Gastroenterology and Liver Disease, Academic Medical Center
Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
Email: p.l.jansen@amc.uva.nl