ABSTRACT
Although hereditary or acquired defects in hepatobiliary transporter systems cause or predispose to cholestasis, adaptive bile acid transporter changes can counteract cholestasis by reducing hepatocellular and systemic concentrations of retained cholephiles. An important level in the regulation of adaptive bile acid transporters and overflow pathways is mediated at the transcriptional level by nuclear hormone receptors. Moreover, therapeutic approaches targeting nuclear receptors in cholestasis may stimulate these adaptive changes and open a new perspective for the treatment of cholestatic liver diseases. This review gives a comprehensive overview on bile acid transporters in the enterohepatic circulation and their adaptive changes in response to cholestasis as well as the regulatory networks underlying these adaptive mechanisms.
KEYWORDS
ABC transporters - bile acids - bilirubin - cholestasis - enterohepatic circulation - multidrug resistance (associated) proteins - nuclear receptors - adaptation
REFERENCES
1
Trauner M, Meier P J, Boyer J L.
Molecular pathogenesis of cholestasis.
N Engl J Med.
1998;
339(17)
1217-1227
2
Boyer J L.
It's all about bile.
Hepatology.
2009;
49(3)
711-723
3
Wagner M, Zollner G, Trauner M.
New molecular insights into the mechanisms of cholestasis.
J Hepatol.
2009;
51(3)
565-580
4
Geier A, Wagner M, Dietrich C G, Trauner M.
Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration.
Biochim Biophys Acta.
2007;
1773(3)
283-308
5
Zollner G, Marschall H U, Wagner M, Trauner M.
Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations.
Mol Pharm.
2006;
3(3)
231-251
6
Chawla A, Repa J J, Evans R M, Mangelsdorf D J.
Nuclear receptors and lipid physiology: opening the X-files.
Science.
2001;
294(5548)
1866-1870
7
Shulman A I, Mangelsdorf D J.
Retinoid X receptor heterodimers in the metabolic syndrome.
N Engl J Med.
2005;
353(6)
604-615
8
Jensen E V.
Estrogen receptor: ambiguities in the use of this term.
Science.
1968;
159(820)
1261
9
Hollenberg S M, Weinberger C, Ong E S et al..
Primary structure and expression of a functional human glucocorticoid receptor cDNA.
Nature.
1985;
318(6047)
635-641
10
Jansen P L, Sturm E.
Genetic cholestasis, causes and consequences for hepatobiliary transport.
Liver Int.
2003;
23(5)
315-322
11
Hofmann A F.
The continuing importance of bile acids in liver and intestinal disease.
Arch Intern Med.
1999;
159(22)
2647-2658
12
Chiang J Y.
Bile acids: regulation of synthesis.
J Lipid Res.
2009;
, April 3 (Epub ahead of print)
13
Inagaki T, Choi M, Moschetta A et al..
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis.
Cell Metab.
2005;
2(4)
217-225
14
Trauner M, Boyer J L.
Bile salt transporters: molecular characterization, function, and regulation.
Physiol Rev.
2003;
83(2)
633-671
15
Trauner M, Wagner M, Fickert P, Zollner G.
Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis.
J Clin Gastroenterol.
2005;
39(4, Suppl 2)
S111-S124
16
Wagner M, Trauner M.
Transcriptional regulation of hepatobiliary transport systems in health and disease: implications for a rationale approach to the treatment of intrahepatic cholestasis.
Ann Hepatol.
2005;
4(2)
77-99
17
Zelcer N, van de Wetering K, de Waart R et al..
Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides.
J Hepatol.
2006;
44(4)
768-775
18
Mennone A, Soroka C J, Cai S Y et al..
Mrp4-/- mice have an impaired cytoprotective response in obstructive cholestasis.
Hepatology.
2006;
43(5)
1013-1021
19
Boyer J L, Trauner M, Mennone A et al..
Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents.
Am J Physiol Gastrointest Liver Physiol.
2006;
290(6)
G1124-G1130
20
Soroka C J, Mennone A, Hagey L R, Ballatori N, Boyer J L.
Mouse organic solute transporter alpha deficiency enhances renal excretion of bile acids and attenuates cholestasis.
Hepatology.
2010;
51(1)
181-190
21
Dawson P A, Lan T, Rao A.
Bile acid transporters.
J Lipid Res.
2009;
50(12)
2340-2357
22
Hruz P, Zimmermann C, Gutmann H et al..
Adaptive regulation of the ileal apical sodium dependent bile acid transporter (ASBT) in patients with obstructive cholestasis.
Gut.
2006;
55(3)
395-402
23
Alpini G, Ueno Y, Glaser S S et al..
Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes.
Hepatology.
2001;
34(5)
868-876
24
Xia X, Francis H, Glaser S, Alpini G, LeSage G.
Bile acid interactions with cholangiocytes.
World J Gastroenterol.
2006;
12(22)
3553-3563
25
Fujino T, Murakami K, Ozawa I et al..
Hypoxia downregulates farnesoid X receptor via a hypoxia-inducible factor-independent but p38 mitogen-activated protein kinase-dependent pathway.
FEBS J.
2009;
276(5)
1319-1332
26
Fouassier L, Beaussier M, Schiffer E et al..
Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes.
Am J Physiol Gastrointest Liver Physiol.
2007;
293(1)
G25-G35
27
Arrese M, Trauner M.
Molecular aspects of bile formation and cholestasis.
Trends Mol Med.
2003;
9(12)
558-564
28
Kullak-Ublick G A, Stieger B, Meier P J.
Enterohepatic bile salt transporters in normal physiology and liver disease.
Gastroenterology.
2004;
126(1)
322-342
29
Anwer M S.
Cellular regulation of hepatic bile acid transport in health and cholestasis.
Hepatology.
2004;
39(3)
581-590
30
Mangelsdorf D J, Thummel C, Beato M et al..
The nuclear receptor superfamily: the second decade.
Cell.
1995;
83(6)
835-839
31
Perissi V, Rosenfeld M G.
Controlling nuclear receptors: the circular logic of cofactor cycles.
Nat Rev Mol Cell Biol.
2005;
6(7)
542-554
32
Suchy F J, Ananthanarayanan M.
Bile salt excretory pump: biology and pathobiology.
J Pediatr Gastroenterol Nutr.
2006;
43(Suppl 1)
S10-S16
33
Gineste R, Sirvent A, Paumelle R et al..
Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity.
Mol Endocrinol.
2008;
22(11)
2433-2447
34
Chen F, Ellis E, Strom S C, Shneider B L.
ATPase Class I Type 8B Member 1 and protein kinase C zeta induce the expression of the canalicular bile salt export pump in human hepatocytes.
Pediatr Res.
2010;
67(2)
183-187
35
Parks D J, Blanchard S G, Bledsoe R K et al..
Bile acids: natural ligands for an orphan nuclear receptor.
Science.
1999;
284(5418)
1365-1368
36
Makishima M, Okamoto A Y, Repa J J et al..
Identification of a nuclear receptor for bile acids.
Science.
1999;
284(5418)
1362-1365
37
Wang H, Chen J, Hollister K, Sowers L C, Forman B M.
Endogenous bile acids are ligands for the nuclear receptor FXR/BAR.
Mol Cell.
1999;
3(5)
543-553
38
Makishima M, Lu T T, Xie W et al..
Vitamin D receptor as an intestinal bile acid sensor.
Science.
2002;
296(5571)
1313-1316
39
Staudinger J L, Goodwin B, Jones S A et al..
The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity.
Proc Natl Acad Sci U S A.
2001;
98(6)
3369-3374
40
Xie W, Radominska-Pandya A, Shi Y et al..
An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids.
Proc Natl Acad Sci U S A.
2001;
98(6)
3375-3380
41
Huang W, Zhang J, Chua S S et al..
Induction of bilirubin clearance by the constitutive androstane receptor (CAR).
Proc Natl Acad Sci U S A.
2003;
100(7)
4156-4161
42
Moore D D, Kato S, Xie W et al..
International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor.
Pharmacol Rev.
2006;
58(4)
742-759
43
Song C, Hiipakka R A, Liao S.
Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs.
Steroids.
2000;
65(8)
423-427
44
Lu T T, Repa J J, Mangelsdorf D J.
Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism.
J Biol Chem.
2001;
276(41)
37735-37738
45
Pellicciari R, Fiorucci S, Camaioni E et al..
6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity.
J Med Chem.
2002;
45(17)
3569-3572
46
Maloney P R, Parks D J, Haffner C D et al..
Identification of a chemical tool for the orphan nuclear receptor FXR.
J Med Chem.
2000;
43(16)
2971-2974
47
Fiorucci S, Rizzo G, Donini A, Distrutti E, Santucci L.
Targeting farnesoid X receptor for liver and metabolic disorders.
Trends Mol Med.
2007;
13(7)
298-309
48
Duran-Sandoval D, Mautino G, Martin G et al..
Glucose regulates the expression of the farnesoid X receptor in liver.
Diabetes.
2004;
53(4)
890-898
49
Wagner M, Zollner G, Trauner M.
Nuclear bile acid receptor farnesoid X receptor meets nuclear factor-kappaB: new insights into hepatic inflammation.
Hepatology.
2008;
48(5)
1383-1386
50
Goodwin B, Jones S A, Price R R et al..
A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis.
Mol Cell.
2000;
6(3)
517-526
51
Lu T T, Makishima M, Repa J J et al..
Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors.
Mol Cell.
2000;
6(3)
507-515
52
Lee Y K, Dell H, Dowhan D H, Hadzopoulou-Cladaras M, Moore D D.
The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression.
Mol Cell Biol.
2000;
20(1)
187-195
53
Denson L A, Sturm E, Echevarria W et al..
The orphan nuclear receptor, SHP, mediates bile acid-induced inhibition of the rat bile acid transporter, NTCP.
Gastroenterology.
2001;
121(1)
140-147
54
Jung D, Hagenbuch B, Fried M, Meier P J, Kullak-Ublick G A.
Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene.
Am J Physiol Gastrointest Liver Physiol.
2004;
286(5)
G752-G761
55
Eloranta J J, Jung D, Kullak-Ublick G A.
The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-dependent mechanism.
Mol Endocrinol.
2006;
20(1)
65-79
56
Gupta S, Stravitz R T, Dent P, Hylemon P B.
Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway.
J Biol Chem.
2001;
276(19)
15816-15822
57
Alvaro D, Gigliozzi A, Marucci L et al..
Corticosteroids modulate the secretory processes of the rat intrahepatic biliary epithelium.
Gastroenterology.
2002;
122(4)
1058-1069
58
Bochkis I M, Rubins N E, White P, Furth E E, Friedman J R, Kaestner K H.
Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress.
Nat Med.
2008;
14(8)
828-836
59
Eloranta J J, Kullak-Ublick G A.
Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism.
Arch Biochem Biophys.
2005;
433(2)
397-412
60
Jung D, Kullak-Ublick G A.
Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression.
Hepatology.
2003;
37(3)
622-631
61
Shih D Q, Bussen M, Sehayek E et al..
Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism.
Nat Genet.
2001;
27(4)
375-382
62
Hayhurst G P, Lee Y H, Lambert G, Ward J M, Gonzalez F J.
Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis.
Mol Cell Biol.
2001;
21(4)
1393-1403
63
Bohan A, Chen W S, Denson L A, Held M A, Boyer J L.
Tumor necrosis factor alpha-dependent up-regulation of LRH-1 and MRP3(ABCC3) reduces liver injury in obstructive cholestasis.
J Biol Chem.
2003;
278(38)
36688-36698
64
Li H, Chen F, Shang Q et al..
FXR-activating ligands inhibit rabbit ASBT expression via FXR-SHP-FTF cascade.
Am J Physiol Gastrointest Liver Physiol.
2005;
288(1)
G60-G66
65
Neimark E, Chen F, Li X, Shneider B L.
Bile acid-induced negative feedback regulation of the human ileal bile acid transporter.
Hepatology.
2004;
40(1)
149-156
66
Sinha J, Chen F, Miloh T, Burns R C, Yu Z, Shneider B L.
beta-Klotho and FGF-15/19 inhibit the apical sodium-dependent bile acid transporter in enterocytes and cholangiocytes.
Am J Physiol Gastrointest Liver Physiol.
2008;
295(5)
G996-G1003
67
Miao J, Xiao Z, Kanamaluru D et al..
Bile acid signaling pathways increase stability of small heterodimer partner (SHP) by inhibiting ubiquitin-proteasomal degradation.
Genes Dev.
2009;
23(8)
986-996
68
Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf D J, Suchy F J.
Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor.
J Biol Chem.
2001;
276(31)
28857-28865
69
Kast H R, Goodwin B, Tarr P T et al..
Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor.
J Biol Chem.
2002;
277(4)
2908-2915
70
Denson L A, Auld K L, Schiek D S, McClure M H, Mangelsdorf D J, Karpen S J.
Interleukin-1beta suppresses retinoid transactivation of two hepatic transporter genes involved in bile formation.
J Biol Chem.
2000;
275(12)
8835-8843
71
Huang L, Zhao A, Lew J L et al..
Farnesoid X receptor activates transcription of the phospholipid pump MDR3.
J Biol Chem.
2003;
278(51)
51085-51090
72
Moschetta A, Bookout A L, Mangelsdorf D J.
Prevention of cholesterol gallstone disease by FXR agonists in a mouse model.
Nat Med.
2004;
10(12)
1352-1358
73
Fickert P, Fuchsbichler A, Wagner M et al..
Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.
Gastroenterology.
2004;
127(1)
261-274
74
Smit J J, Schinkel A H, Oude Elferink R P et al..
Homozygous disruption of the murine MDR2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease.
Cell.
1993;
75(3)
451-462
75
Landrier J F, Eloranta J J, Vavricka S R, Kullak-Ublick G A.
The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes.
Am J Physiol Gastrointest Liver Physiol.
2006;
290(3)
G476-G485
76
Kim I, Ahn S H, Inagaki T et al..
Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine.
J Lipid Res.
2007;
48(12)
2664-2672
77
Schaap F G, van der Gaag N A, Gouma D J, Jansen P L.
High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis.
Hepatology.
2009;
49(4)
1228-1235
78
Lehmann J M, McKee D D, Watson M A, Willson T M, Moore J T, Kliewer S A.
The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions.
J Clin Invest.
1998;
102(5)
1016-1023
79
Zhang H, LeCulyse E, Liu L et al..
Rat pregnane X receptor: molecular cloning, tissue distribution, and xenobiotic regulation.
Arch Biochem Biophys.
1999;
368(1)
14-22
80
Moore L B, Parks D J, Jones S A et al..
Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands.
J Biol Chem.
2000;
275(20)
15122-15127
81
Schuetz E G, Strom S, Yasuda K et al..
Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450.
J Biol Chem.
2001;
276(42)
39411-39418
82
Frank C, Gonzalez M M, Oinonen C, Dunlop T W, Carlberg C.
Characterization of DNA complexes formed by the nuclear receptor constitutive androstane receptor.
J Biol Chem.
2003;
278(44)
43299-43310
83
Wagner M, Halilbasic E, Marschall H U et al..
CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice.
Hepatology.
2005;
42(2)
420-430
84
Marschall H U, Wagner M, Zollner G et al..
Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans.
Gastroenterology.
2005;
129(2)
476-485
85
Teng S, Jekerle V, Piquette-Miller M.
Induction of ABCC3 (MRP3) by pregnane X receptor activators.
Drug Metab Dispos.
2003;
31(11)
1296-1299
86
Jung D, Mangelsdorf D J, Meyer U A.
Pregnane X receptor is a target of farnesoid X receptor.
J Biol Chem.
2006;
281(28)
19081-19091
87
Zollner G, Trauner M.
Nuclear receptors as therapeutic targets in cholestatic liver diseases.
Br J Pharmacol.
2009;
156(1)
7-27
88
Gascon-Barré M, Demers C, Mirshahi A, Néron S, Zalzal S, Nanci A.
The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells.
Hepatology.
2003;
37(5)
1034-1042
89
McCarthy T C, Li X, Sinal C J.
Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids.
J Biol Chem.
2005;
280(24)
23232-23242
90
Echchgadda I, Song C S, Roy A K, Chatterjee B.
Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor.
Mol Pharmacol.
2004;
65(3)
720-729
91
Chen X, Chen F, Liu S et al..
Transactivation of rat apical sodium-dependent bile acid transporter and increased bile acid transport by 1alpha,25-dihydroxyvitamin D3 via the vitamin D receptor.
Mol Pharmacol.
2006;
69(6)
1913-1923
92
Honjo Y, Sasaki S, Kobayashi Y, Misawa H, Nakamura H.
1,25-dihydroxyvitamin D3 and its receptor inhibit the chenodeoxycholic acid-dependent transactivation by farnesoid X receptor.
J Endocrinol.
2006;
188(3)
635-643
93
Chow E C, Maeng H J, Liu S, Khan A A, Groothuis G M, Pang K S.
1alpha,25-Dihydroxyvitamin D(3) triggered vitamin D receptor and farnesoid X receptor-like effects in rat intestine and liver in vivo.
Biopharm Drug Dispos.
2009;
30(8)
457-475
94
Khan A A, Chow E C, Porte R J, Pang K S, Groothuis G M.
Expression and regulation of the bile acid transporter, OSTalpha-OSTbeta in rat and human intestine and liver.
Biopharm Drug Dispos.
2009;
30(5)
241-258
95
Han S, Chiang J Y.
Mechanism of vitamin D receptor inhibition of cholesterol 7alpha-hydroxylase gene transcription in human hepatocytes.
Drug Metab Dispos.
2009;
37(3)
469-478
96
Jiang W, Miyamoto T, Kakizawa T et al..
Inhibition of LXRalpha signaling by vitamin D receptor: possible role of VDR in bile acid synthesis.
Biochem Biophys Res Commun.
2006;
351(1)
176-184
97
D'Aldebert E, Biyeyeme Bi Mve M J, Mergey M et al..
Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium.
Gastroenterology.
2009;
136(4)
1435-1443
98
Karpen S J, Sun A Q, Kudish B et al..
Multiple factors regulate the rat liver basolateral sodium-dependent bile acid cotransporter gene promoter.
J Biol Chem.
1996;
271(25)
15211-15221
99
Hoeke M O, Plass J R, Heegsma J et al..
Low retinol levels differentially modulate bile salt-induced expression of human and mouse hepatic bile salt transporters.
Hepatology.
2009;
49(1)
151-159
100
Chen W, Cai S Y, Xu S, Denson L A, Soroka C J, Boyer J L.
Nuclear receptors RXRalpha:RARalpha are repressors for human MRP3 expression.
Am J Physiol Gastrointest Liver Physiol.
2007;
292(5)
G1221-G1227
101
Gyamfi M A, Wan Y J.
Mechanisms of resistance of hepatocyte retinoid X receptor alpha-null mice to WY-14,643-induced hepatocyte proliferation and cholestasis.
J Biol Chem.
2009;
284(14)
9321-9330
102
Brown J D, Plutzky J.
Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets.
Circulation.
2007;
115(4)
518-533
103
Kota B P, Huang T H, Roufogalis B D.
An overview on biological mechanisms of PPARs.
Pharmacol Res.
2005;
51(2)
85-94
104
Nakata K, Tanaka Y, Nakano T et al..
Nuclear receptor-mediated transcriptional regulation in phase I, II, and III xenobiotic metabolizing systems.
Drug Metab Pharmacokinet.
2006;
21(6)
437-457
105
Hunt M C, Yang Y Z, Eggertsen G et al..
The peroxisome proliferator-activated receptor alpha (PPARalpha) regulates bile acid biosynthesis.
J Biol Chem.
2000;
275(37)
28947-28953
106
Patel D D, Knight B L, Soutar A K, Gibbons G F, Wade D P.
The effect of peroxisome-proliferator-activated receptor-alpha on the activity of the cholesterol 7 alpha-hydroxylase gene.
Biochem J.
2000;
351(Pt 3)
747-753
107
Barbier O, Villeneuve L, Bocher V et al..
The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene.
J Biol Chem.
2003;
278(16)
13975-13983
108
Fang H L, Strom S C, Cai H, Falany C N, Kocarek T A, Runge-Morris M.
Regulation of human hepatic hydroxysteroid sulfotransferase gene expression by the peroxisome proliferator-activated receptor alpha transcription factor.
Mol Pharmacol.
2005;
67(4)
1257-1267
109
Marrapodi M, Chiang J Y.
Peroxisome proliferator-activated receptor alpha (PPARalpha) and agonist inhibit cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription.
J Lipid Res.
2000;
41(4)
514-520
110
Kok T, Bloks V W, Wolters H et al..
Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice.
Biochem J.
2003;
369(Pt 3)
539-547
111
Jung D, Fried M, Kullak-Ublick G A.
Human apical sodium-dependent bile salt transporter gene (SLC10A2) is regulated by the peroxisome proliferator-activated receptor alpha.
J Biol Chem.
2002;
277(34)
30559-30566
112
Tanaka H, Makino I.
Ursodeoxycholic acid-dependent activation of the glucocorticoid receptor.
Biochem Biophys Res Commun.
1992;
188(2)
942-948
113
Miura T, Ouchida R, Yoshikawa N et al..
Functional modulation of the glucocorticoid receptor and suppression of NF-kappaB-dependent transcription by ursodeoxycholic acid.
J Biol Chem.
2001;
276(50)
47371-47378
114
Jung D, Fantin A C, Scheurer U, Fried M, Kullak-Ublick G A.
Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor.
Gut.
2004;
53(1)
78-84
115
Courtois A, Payen L, Guillouzo A, Fardel O.
Up-regulation of multidrug resistance-associated protein 2 (MRP2) expression in rat hepatocytes by dexamethasone.
FEBS Lett.
1999;
459(3)
381-385
116
Pułaski L, Kania K, Ratajewski M, Uchiumi T, Kuwano M, Bartosz G.
Differential regulation of the human MRP2 and MRP3 gene expression by glucocorticoids.
J Steroid Biochem Mol Biol.
2005;
96(3-4)
229-234
117
Nishimura M, Koeda A, Suzuki E et al..
Regulation of mRNA expression of MDR1, MRP1, MRP2 and MRP3 by prototypical microsomal enzyme inducers in primary cultures of human and rat hepatocytes.
Drug Metab Pharmacokinet.
2006;
21(4)
297-307
118
Arenas F, Hervias I, Uriz M, Joplin R, Prieto J, Medina J F.
Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells.
J Clin Invest.
2008;
118(2)
695-709
119
Prieto J, Qian C, García N, Díez J, Medina J F.
Abnormal expression of anion exchanger genes in primary biliary cirrhosis.
Gastroenterology.
1993;
105(2)
572-578
120
Drocourt L, Ourlin J C, Pascussi J M, Maurel P, Vilarem M J.
Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes.
J Biol Chem.
2002;
277(28)
25125-25132
121
Lee Y K, Moore D D.
Liver receptor homolog-1, an emerging metabolic modulator.
Front Biosci.
2008;
13
5950-5958
122
Fayard E, Auwerx J, Schoonjans K.
LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis.
Trends Cell Biol.
2004;
14(5)
250-260
123
Song X, Kaimal R, Yan B, Deng R.
Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression.
J Lipid Res.
2008;
49(5)
973-984
124
Matsukuma K E, Wang L, Bennett M K, Osborne T F.
A key role for orphan nuclear receptor liver receptor homologue-1 in activation of fatty acid synthase promoter by liver X receptor.
J Biol Chem.
2007;
282(28)
20164-20171
125
Iwaki M, Matsuda M, Maeda N et al..
Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors.
Diabetes.
2003;
52(7)
1655-1663
126
Lee Y K, Moore D D.
Dual mechanisms for repression of the monomeric orphan receptor liver receptor homologous protein-1 by the orphan small heterodimer partner.
J Biol Chem.
2002;
277(4)
2463-2467
127
Chen F, Ma L, Dawson P A et al..
Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter.
J Biol Chem.
2003;
278(22)
19909-19916
128
Inokuchi A, Hinoshita E, Iwamoto Y, Kohno K, Kuwano M, Uchiumi T.
Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes. A transcriptional control of a plausible bile acid transporter.
J Biol Chem.
2001;
276(50)
46822-46829
129
Frankenberg T, Rao A, Chen F, Haywood J, Shneider B L, Dawson P A.
Regulation of the mouse organic solute transporter alpha-beta, Ostalpha-Ostbeta, by bile acids.
Am J Physiol Gastrointest Liver Physiol.
2006;
290(5)
G912-G922
130
Lee Y K, Schmidt D R, Cummins C L et al..
Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis.
Mol Endocrinol.
2008;
22(6)
1345-1356
131
Mataki C, Magnier B C, Houten S M et al..
Compromised intestinal lipid absorption in mice with a liver-specific deficiency of liver receptor homolog 1.
Mol Cell Biol.
2007;
27(23)
8330-8339
132
Lee Y K, Schmidt D R, Cummins C L et al..
Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis.
Mol Endocrinol.
2008;
22(6)
1345-1356
133
Zhang D D, Hannink M.
Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
Mol Cell Biol.
2003;
23(22)
8137-8151
134
Itoh K, Chiba T, Takahashi S et al..
An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.
Biochem Biophys Res Commun.
1997;
236(2)
313-322
135
Tan K P, Yang M, Ito S.
Activation of nuclear factor (erythroid-2 like) factor 2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stress.
Mol Pharmacol.
2007;
72(5)
1380-1390
136
Vollrath V, Wielandt A M, Iruretagoyena M, Chianale J.
Role of Nrf2 in the regulation of the Mrp2 (ABCC2) gene.
Biochem J.
2006;
395(3)
599-609
137
Maher J M, Dieter M Z, Aleksunes L M et al..
Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway.
Hepatology.
2007;
46(5)
1597-1610
138
Weerachayaphorn J, Cai S Y, Soroka C J, Boyer J L.
Nuclear factor erythroid 2-related factor 2 is a positive regulator of human bile salt export pump expression.
Hepatology.
2009;
50(5)
1588-1596
139
Okada K, Shoda J, Taguchi K et al..
Nrf2 counteracts cholestatic liver injury via stimulation of hepatic defense systems.
Biochem Biophys Res Commun.
2009;
389(3)
431-436
140
Wang Y D, Chen W D, Wang M, Yu D, Forman B M, Huang W.
Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response.
Hepatology.
2008;
48(5)
1632-1643
141
Zhou C, Tabb M M, Nelson E L et al..
Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation.
J Clin Invest.
2006;
116(8)
2280-2289
142
Farmer P K, He X, Schmitz M L, Rubin J, Nanes M S.
Inhibitory effect of NF-kappaB on 1,25-dihydroxyvitamin D(3) and retinoid X receptor function.
Am J Physiol Endocrinol Metab.
2000;
279(1)
E213-E220
143
Fiorucci S, Antonelli E, Rizzo G et al..
The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis.
Gastroenterology.
2004;
127(5)
1497-1512
144
Fickert P, Fuchsbichler A, Moustafa T et al..
Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts.
Am J Pathol.
2009;
175(6)
2392-2405
145
Marek C J, Tucker S J, Konstantinou D K et al..
Pregnenolone-16alpha-carbonitrile inhibits rodent liver fibrogenesis via PXR (pregnane X receptor)-dependent and PXR-independent mechanisms.
Biochem J.
2005;
387(Pt 3)
601-608
146
Fiorucci S, Rizzo G, Antonelli E et al..
Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor gamma contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis.
J Pharmacol Exp Ther.
2005;
315(1)
58-68
147
Fiorucci S, Rizzo G, Antonelli E et al..
A farnesoid X receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis.
J Pharmacol Exp Ther.
2005;
314(2)
584-595
148
Paumgartner G, Pusl T.
Medical treatment of cholestatic liver disease.
Clin Liver Dis.
2008;
12(1)
53-80, viii
, viii
149
Lew J L, Zhao A, Yu J et al..
The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion.
J Biol Chem.
2004;
279(10)
8856-8861
150
Beuers U.
Drug insight: Mechanisms and sites of action of ursodeoxycholic acid in cholestasis.
Nat Clin Pract Gastroenterol Hepatol.
2006;
3(6)
318-328
151
Zollner G, Fickert P, Silbert D et al..
Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis.
J Hepatol.
2003;
38(6)
717-727
152
Corpechot C, Abenavoli L, Rabahi N et al..
Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis.
Hepatology.
2008;
48(3)
871-877
153
Parés A, Caballería L, Rodés J.
Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic acid.
Gastroenterology.
2006;
130(3)
715-720
154
Cullen S N, Chapman R W.
The medical management of primary sclerosing cholangitis.
Semin Liver Dis.
2006;
26(1)
52-61
155
Lindor K D. Mayo Primary Sclerosing Cholangitis-Ursodeoxycholic Acid Study Group .
Ursodiol for primary sclerosing cholangitis.
N Engl J Med.
1997;
336(10)
691-695
156
Lindor K D, Kowdley K V, Luketic V A et al..
High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis.
Hepatology.
2009;
50(3)
808-814
157
Fickert P, Wagner M, Marschall H U et al..
24-norursodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.
Gastroenterology.
2006;
130(2)
465-481
158
Yoon Y B, Hagey L R, Hofmann A F, Gurantz D, Michelotti E L, Steinbach J H.
Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents.
Gastroenterology.
1986;
90(4)
837-852
159
Huang W, Zhang J, Moore D D.
A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR.
J Clin Invest.
2004;
113(1)
137-143
160
Chen H L, Liu Y J, Chen H L et al..
Expression of hepatocyte transporters and nuclear receptors in children with early and late-stage biliary atresia.
Pediatr Res.
2008;
63(6)
667-673
161
Karpen S J.
Exercising the nuclear option to treat cholestasis: CAR and PXR ligands.
Hepatology.
2005;
42(2)
266-269
162
Kanda T, Yokosuka O, Imazeki F, Saisho H.
Bezafibrate treatment: a new medical approach for PBC patients?.
J Gastroenterol.
2003;
38(6)
573-578
163
Nakai S, Masaki T, Kurokohchi K, Deguchi A, Nishioka M.
Combination therapy of bezafibrate and ursodeoxycholic acid in primary biliary cirrhosis: a preliminary study.
Am J Gastroenterol.
2000;
95(1)
326-327
164
Ritzel U, Leonhardt U, Näther M, Schäfer G, Armstrong V W, Ramadori G.
Simvastatin in primary biliary cirrhosis: effects on serum lipids and distinct disease markers.
J Hepatol.
2002;
36(4)
454-458
165
Ogura M, Nishida S, Ishizawa M et al..
Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice.
J Pharmacol Exp Ther.
2009;
328(2)
564-570
166
Tanaka A, Nezu S, Uegaki S et al..
Vitamin D receptor polymorphisms are associated with increased susceptibility to primary biliary cirrhosis in Japanese and Italian populations.
J Hepatol.
2009;
50(6)
1202-1209
167
Fiorucci S, Baldelli F.
Farnesoid X receptor agonists in biliary tract disease.
Curr Opin Gastroenterol.
2009;
25(3)
252-259
168
Inagaki T, Moschetta A, Lee Y K et al..
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
Proc Natl Acad Sci U S A.
2006;
103(10)
3920-3925
169
Liu Y, Binz J, Numerick M J et al..
Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis.
J Clin Invest.
2003;
112(11)
1678-1687
Michael TraunerM.D.
Division of Gastroenterology and Hepatology, Department of Internal Medicine
Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
Email: michael.trauner@meduni-graz.at