Subscribe to RSS
DOI: 10.1055/s-0030-1253321
© Georg Thieme Verlag Stuttgart · New York
HDL und Arteriosklerose – Korrelation mit dem Auftreten kardiovaskulärer Ereignisse
HDL and arteriosclerosis – An interesting aim for reducing cardiovascular eventsPublication History
Publication Date:
29 March 2010 (online)
Große epidemiologische Studien zeigen, dass die Plasmakonzentration der High Density Lipoproteine (HDL) invers und unabhängig mit der Inzidenz kardiovaskulärer Ereignisse korreliert. Unter physiologischen Bedingungen vermitteln HDL eine Vielzahl vaskuloprotektiver Wirkungen, insbesondere den reversen Cholesterintransport. Neue Studien zeigen jedoch, dass die Zusammensetzung der HDL-Partikel heterogen ist. Daher existieren neben den physiologischen vasoprotektiven HDL unter pathophysiologischen Umständen HDL, welche durch verschiedene strukturelle Modifikationen proatherogene Eigenschaften annehmen können. Eine Erhöhung der HDL-Cholesterinkonzentration im Plasma kann daher nicht mit einer Verbesserung der HDL-Funktion und einem effektiveren Cholesterinrücktransport gleichgesetzt werden. Wichtiger als die reine Betrachtung der HDL-Cholesterin-Plasmakonzentration erscheint daher die Evaluation der funktionellen Eigenschaften der HDL-Partikel, allerdings stehen hierzu noch keine akzeptierten Assays für die Praxis zur Verfügung. Lebensstiländerungen sowie verschiedene Medikamente wie Fibrate oder Nikotinsäurederivate führen zu einer Erhöhung der HDL-Konzentration. Eine neue Therapiestrategie zur Steigerung der HDL-Konzentration ist die Hemmung des Cholesterylester Transferproteins (CETP). Laufende Studien müssen zeigen, ob diese Medikamente, zusätzlich zu der etablierten LDL-Cholesterin-Senkung mit Statinen, Vorteile für Patienten mit niedrigem HDL bringt.
Large epidemiologic studies show an inverse and independent correlation between the plasma concentration of High Density Lipoproteins (HDL) and the incidence of cardiovascular events. Under physiological conditions, HDL exhibit a plethora of vasculoprotective effects, like mediation of reverse cholesterol transport. However, new studies suggest that HDL particles are heterogeneous. Therefore, several structural alterations might lead to the formation of pro-inflammatory HDL particles. Therefore, a high plasma concentration of HDL cholesterol must not always be associated with an improvement of HDL function such as reverse cholesterol transport. The evaluation of the functional properties of HDL seems to be more important than measurements of plasma concentrations of HDL cholesterol. However, until now, no assays for this purpose have been developed for use in clinical practice. Lifestyle modifications and different therapeutic strategies such as treatment with fibrates or nicotinic acid derivatives lead to an increase of HDL concentration. Inhibition of cholesteryl ester transfer protein (CETP) is a new strategy to increase HDL cholesterol concentrations. Current studies will have to show whether addition of these drugs to the established LDL-lowering therapy with statins will result in clinical benefits for patients with low HDL.
Key words
Lipid metabolism - HDL (high density lipoproteins) - cardiovascular events - cholesterol - cholesteryl ester transfer protein (CETP) - atherogenesis
Literatur
- 1 Gordon T, Castelli WP, Hjortland MC et al.. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977; 62 707-714
- 2 Assmann G, Schulte H.. The Prospective Cardiovascular Münster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am Heart J. 1988; 116 1713-1724
- 3 Pöss J, Böhm M, Laufs U.. HDL and CETP in Atherogenesis. Dtsch Med Wochenschr. 2010; 135 188-192
- 4 Florentin M, Liberopoulos EN, Wierzbicki AS, Mikhailidis DP.. Multiple actions of high-density lipoprotein. Curr Opin Cardiol. 2008; 23 370-378
- 5 Navab M, Hama SY, Hough GP et al.. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res. 2001; 42 1308-1317
- 6 Fogelman AM.. When good cholesterol goes bad. Nat Med. 2004; 10 902-903
- 7 Hedrick CC, Thorpe SR, Fu MX et al.. Glycation impairs high-density lipoprotein function. Diabetologia. 2000; 43 312-320
- 8 Laufs U.. Stable coronary artery disease – diagnosis and therapy. Dtsch Med Wochenschr. 2006; 131 563-554
- 9 Singh IM, Shishehbor MH, Ansell BJ.. High-density lipoprotein as a therapeutic target: a systematic review. JAMA. 2007; 298 786-798
- 10 Frick MH, Elo O, Haapa K et al.. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987; 317 1237-1245
- 11 Rubins HB, Robins SJ, Collins D et al.. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999; 341 410-418
- 12 Robins SJ, Collins D, Wittes JT et al.. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA. 2001; 285 1585-1591
- 13 Jones PH, Davidson MH.. Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Am J Cardiol. 2005; 95 120-122
- 14 Duffy D, Rader DJ.. Update on strategies to increase HDL quantity and function. Nat Rev Cardiol. 2009; 6 455-463
- 15 Clofibrate and niacin in coronary heart disease. JAMA. 1975; 231 360-381
- 16 Canner PL, Berge KG, Wenger NK et al.. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986; 8 1245-1255
- 17 Taylor AJ, Villines TC, Stanek EJ et al.. Extended-release niacin or ezetimibe and carotid intima-media thickness. N Engl J Med. 2009; 361 2113-2122
- 18 Hirano K, Yamashita S, Nakajima N et al.. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol. 1997; 17 1053-1059
- 19 Zhong S, Sharp DS, Grove JS et al.. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest. 1996; 97 2917-2923
- 20 Plump AS, Masucci-Magoulas L, Bruce C et al.. Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol. 1999; 19 1105-1110
- 21 Hayek T, Masucci-Magoulas L, Jiang X et al.. Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene. J Clin Invest. 1995; 96 2071-2074
- 22 Bots ML, Visseren FL, Evans GW et al.. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet. 2007; 370 153-160
- 23 Kastelein JJ, van Leuven SI, Burgess L et al.. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. 2007; 356 1620-1630
- 24 Barter PJ, Caulfield M, Eriksson M et al.. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007; 357 2109-2122
- 25 Nissen SE, Tsunoda T, Tuzcu EM et al.. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003; 290 2292-2300
Korrespondenz
Dr. med. Janine Pöss
Klinik für Innere Medizin III – Kardiologie, Angiologie und Internistische Intensivmedizin Universitätsklinikum des Saarlandes
Kirrbergerstraße
66421 Homburg/Saar
Fax: 06841/1623434
Email: janine.poess@gmx.de